Every Martian year (which last 686.98 Earth days), the Red Planet experiences regional dust storms that coincide with summer in the southern hemisphere. Every three Martian years (five and a half Earth years), these storms grow so large that they encompass the entire planet and are visible from Earth. These storms are a serious hazard for robotic missions, causing electrostatic storms that can mess with electronics and cause dust to build up on solar panels. In 2018 and 2022, the Opportunity Rover and InSight Lander were lost after dust storms prevented them from drawing enough power to remain operational.
But what about crewed missions? In the coming decades, NASA and the Chinese Manned Space Agency (CMS) plan to send astronauts and taikonauts to Mars. These missions will include months of surface operations and are expected to culminate in the creation of long-duration habitats on the surface. According to new research by the Keck School of Medicine at the University of Southern California (USC), Martian dust storms can potentially cause respiratory issues and elevated risk of disease, making them yet another health hazard space agencies need to prepare for.
The research was led by Justin L. Wang, a Doctor of Medicine at USC, along with several of his colleagues from the Keck School of Medicine. They were joined by researchers from the UCLA Space Medicine Center, the Ann and HJ Smead Department of Aerospace Engineering and the Laboratory for Atmospheric and Space Physics at UC Boulder, and the Astromaterials Acquisition and Curation Office at NASA’s Johnson Space Center. The paper detailing their findings appeared on February 12th in the journal GeoHealth.
Sending crewed missions to Mars presents many challenges, including logistics and health hazards. In the past 20 years, the shortest distance between Earth and Mars was 55 million km (34 million miles), or roughly 142 times the distance between the Earth and the Moon. This was in 2003 and was the closest the two planets had been in over 50,000 years. Using conventional methods, it would take six to nine months to make a one-way transit, during which time astronauts will experience physiological changes caused by long-term exposure to microgravity.
These include muscle atrophy, loss of bone density, a weakened cardiovascular system, etc. Moreover, a return mission could last as long as three years, during which time astronauts would spend at least a year living and working in Martian gravity (36.5% that of Earth). There’s also the risk of elevated radiation exposure astronauts will experience during transits and while operating on the surface of Mars. However, there are also the potential health effects caused by exposure to Martian regolith. As Wang described to Universe Today via email:
“There are many potential toxic elements that astronauts could be exposed to on Mars. Most critically, there is an abundance of silica dust in addition to iron dust from basalt and nanophase iron, both of which are reactive to the lungs and can cause respiratory diseases. What makes dust on Mars more hazardous is that the average dust particle size on Mars is much smaller than the minimum size that the mucus in our lungs is able to expel, so they’re more likely to cause disease.”
During the Apollo Era, the Apollo astronauts reported how lunar regolith would stick to their spacesuits and adhere to all surfaces inside their spacecraft. Upon their return to Earth, they also reported physical symptoms like coughing, throat irritation, watery eyes, and blurred vision. In a 2005 NASA study, the reports of six of the Apollo astronauts were studied to assess the overall effects of lunar dust on EVA systems, which concluded that the most significant health risks included “vision obscuration” and “inhalation and irritation.”

“Silica directly causes silicosis, which is typically considered an occupational disease for workers that are exposed to silica (i.e., mining and construction),” said Wang. “Silicosis and exposure to toxic iron dust resemble coal worker’s pneumoconiosis, which is common in coal miners and is colloquially known as black lung disease.”
Beyond causing lung irritation and respiratory and vision problems, Martian dust is known for its toxic components. These include perchlorates, silica, iron oxides (rust), gypsum, and trace amounts of toxic metals like chromium, beryllium, arsenic, and cadmium – the abundance of which is not well understood. On Earth, the health effects of exposure to these metals have been studied extensively, which Wang and his team drew upon to assess the risk they pose to astronauts bound for Mars in the coming decades:
“It’s significantly more difficult to treat astronauts on Mars for diseases because the transit time is significantly longer than other previous missions to the ISS and the Moon. In this case, we need to be prepared for a wide array of health problems that astronauts can develop on their long-duration missions. In addition, [microgravity and radiation] negatively impact the human body, can make astronauts more susceptible to diseases, and complicate treatments. In particular, radiation exposure can cause lung disease, which can compound the effects that dust will have on astronauts’ lungs.”
In addition to food, water, and oxygen gas, the distance between Earth and Mars also complicates the delivery of crucial medical supplies, and astronauts cannot be rushed back to Earth for life-saving treatments either. According to Wang and his colleagues, this means that crewed missions will need to be as self-sufficient as possible when it comes to medical treatment as well. As with all major health hazards, they emphasize the need for prevention first, though they also identify some possible countermeasures to mitigate the risks:
“Limiting dust contamination of astronaut habitats and being able to filter out any dust that breaks through will be the most important countermeasure. Of course, some dust will be able to get through, especially when Martian dust storms make maintaining a clean environment more difficult. We’ve found studies that suggest vitamin C can help prevent diseases from chromium exposure and iodine can help prevent thyroid diseases from perchlorate.”

They also stressed that these and other potential countermeasures need to be taken with caution. As Wang indicated, taking too much vitamin C can increase the risk of kidney stones, which astronauts are already at risk for after spending extended periods in microgravity. In addition, an excess of idione can contribute to the same thyroid diseases that it is meant to treat in the first place. For years, space agencies have been actively developing technologies and strategies to mitigate the risks of lunar and Martian regolith.
Examples include special sprays, electron beams, and protective coatings, while multiple studies and experiments are investigating regolith to learn more about its transport mechanisms and behavior. As the Artemis Program unfolds and missions to Mars draw nearer, we are likely to see advances in pharmacology and medical treatments that address the hazards of space exploration as well.
Further Reading: GeoHealth
The post Should Astronauts Be Worried About Mars Dust? appeared first on Universe Today.