SpaceX’s Starship super-rocket got off to a great start for its ninth flight test, but the second stage ran into a host of issues and made an uncontrolled re-entry.
Tuesday, May 27, 2025
New Adaptive Optics Show "Raindrops" on the Sun
Modern ground-based telescopes rely on adaptive optics (AO) to deliver clear images. By correcting for atmospheric distortion, they give us exceptional pictures of planets, stars, and other celestial objects. Now, a team at the National Solar Observatory is using AO to examine the Sun's corona in unprecedented detail.
One Star Once Orbited Inside the Other in this Bizarre Binary System.
Astronomers have spotted a pulsar in a binary system, taking about 3.6 hours for the stars to orbit one another. Their orbit is so close that, from our vantage point, the pulsar’s radio signals vanish for roughly one-sixth of each cycle—blocked by the companion’s interference. Researchers think that the more massive star died first, exploding as a supernova and collapsing into a neutron star, passing within the atmosphere of the other. It took about 1,000 years to blow away the envelope of material.
Astronomers Identified the Lost Star of 1408…Or Have They?
Over the past 90 years, astronomers have successfully matched several Chinese historical records of "guest stars" with known supernovae. However, identifying historical novae (smaller stellar explosions) has proven to be far more challenging, with many proposed candidates later turning out to be comets or meteors instead. One particularly debated case involves a guest star recorded in 1408 CE by Chinese astronomers. A team of astronomers now think they may have finally been able to identify the event, a rare nova that could potentially solve this centuries old astronomical mystery.
Perseverance Photobombed by a Passing Dust Devil
On May 10th, while striking a selfie to mark its 1,500th day on Mars, NASA’s Perseverance Rover got an unexpected guest star—a towering dust devil swirling in the distance photobombed the shot. The rover was on Witch Hazel Hill, an area on the rim of Jezero Crater that it has been exploring for the last 5 months. The dust devil on the other hand was sneaking into the background from a distance of 5 km away. The selfie image was made up of 59 separate photos taken by the rover using its WATSON camera.
Monday, May 26, 2025
How Likely Are Habitable Exo-Moons?
Of the roughly 6,000 exoplanets we've discovered, a significant number are in the apparent habitable zones of their stars. Most are giant planets; either gas giants like Jupiter and Saturn, or ice giants like Uranus and Neptune. Could some of those have habitable exomoons?
Saturday, May 24, 2025
Is Venus Hiding Dangerous Asteroids?
Twenty years ago, the US Congress instructed NASA to find 90% of near-Earth asteroids threatening Earth. They've made progress finding these asteroids that orbit the Sun and come to within 1.3 astronomical units of Earth. However, they may have to expand their search since astronomers are now finding asteroids co-orbiting Venus that could pose a threat.
Friday, May 23, 2025
Astronomers Conduct a Preliminary Search for Exoplanets Around Alpha Centauri
An international team of researchers has announced the preliminary findings of Webb's observations of the Alpha Centauri system. According to their analysis, Alpha Cen A may have a Jupiter-sized planet and a very bright zodiacal dust disk orbiting it.
More Questions About Life on Exoplanet K2-18b
Whenever scientists present new research showing potential biosignatures on an exoplanet, follow-up articles spread like ripples on a pond. Mainstream media usually runs with it, which shows how the issue captures people's attention. The issue of life on other worlds is a compelling one. This is what happened recently with the exoplanet K2-18b.
How To Resolve Conflicts Over Lunar Resources
Sometimes, space enthusiasts blind themselves with techno-optimism about all the potential cool technological things we can do and the benefits they can offer humanity. We conveniently ignore that there are trade-offs: if one group gets to utilize the water available on the lunar surface, that means another group doesn't get to. Recognizing and attempting to come up with a plan to deal with those sorts of trade-offs is the intent of a new paper by Marissa Herron and Therese Jones of NASA's Office of Technology, Policy, and Strategy, as well as Amanda Hernandez of BryceTech, a contractor based out of Virginia.
Venus Has a Single Solid Crust... But It's Surprisingly Thin
Our nearest neighbor is only slightly smaller than the Earth… but that’s just about the only thing the two planets have in common. Now, a recent NASA-funded study suggests that the interior of Venus may be equally strange as well.
Thursday, May 22, 2025
Our Solar System May Have a New Planetary Sibling: Another Dwarf Planet
Our understanding of our Solar System is still evolving. As our telescopes have improved, they've brought the Solar System's deeper reaches into view. Pluto was disqualified as a planet because of it. Now, new research says another dwarf planet may reside at the edge of the Solar System. Its presence supports the Planet X hypothesis.
HERMES-PF's 6 CubeSats Watch The Entire Sky For High-Energy Bursts
Multi-messenger astronomy has been all the rage lately. It involves capturing data on the gravitational and electromagnetic signals from catastrophic cosmic events. However, with that newfound interest comes required updates to infrastructure. Gravitational wave detectors have been upgraded and will be even more sensitive soon. But to realize the promise of multi-messenger astronomy, scientists must have a fleet of spacecraft watching the entire sky for high-energy signals indicative of the events that cause gravitational waves. At least, that is the team's long-term plan behind the High Energy Rapid Modular Ensemble of Satellites Pathfinder (HERMES-PF) mission, which successfully launched in March and is currently undergoing commissioning.
Even Extreme UV from Massive Stars Can't Stop Planets from Forming
We know that planets form in protoplanetary disks, swirling collections of gas and dust that rotate around very young stars. But we don't know all the details, partly because it's difficult to see inside these disks and watch the process unfold. One question astronomers want an answer to concerns ultraviolet radiation. Does extreme ultraviolet radiation disrupt the planet-forming process?
Wednesday, May 21, 2025
New Exoplanet Can Cause Chemical Discrepancies In Paired Stars
Co-paired stars, or stars that travel together, can provide insights into processes that other stars can't. Differences in their brightness, orbits, and chemical composition can hint at different features, and scientists are beginning to exploit them. A new paper from researchers in Australia, China, the US, and Europe analyzed data to determine if one of those features - specifically the depletion of particular elements in a star - could be a sign that it has formed a planet, or if it ate one.
The New, Farthest Galaxy has Been Found by Webb. Only 280 Million Years After the Big Bang
The JWST has done it again. The powerful space telescope has already revealed the presence of bright galaxies only several hundred million years after the Big Bang. Now, it's sensed light from a galaxy only 280 million years after the Big Bang, the most distant galaxy ever detected.
Is the World Ready for a Catastrophic Solar Storm?
Some 13,000 years ago, the Sun emitted a huge belch of radiation that bombarded Earth and left its imprint in ancient tree rings. That solar storm was the most powerful one ever recorded. The next strongest was the 1839 Carrington Event. It was spurred by a huge solar flare that triggered a powerful geomagnetic storm at Earth. The resulting "space weather" disrupted telegraph communications around the world. Today, as we move through this year's "solar maximum", a period of solar activity that occurs every 11 years, scientists want to prepare governments for the effects of severe solar storms.
Is Mars Storing its Water Underground?
Mars' oceans, lakes, and rivers are long gone. They've left behind evidence of their time here in river channels, deltas, paleolakes, and other features. The water's existence isn't a mystery, but its whereabouts is. Did it disappear into space, or did it retreat into underground aquifers?
Tuesday, May 20, 2025
Building A Giant Catchers' Mitt On The Moon
Members of the space exploration community are always coming up with novel ideas to solve problems that they view as holding back humanity's expansion into the cosmos. One such problem that has become more noticeable of late, due to the failure of several powered lunar landers, is the difficulty of landing on the Moon. To open up the wealth of resources on our nearest neighbor, we will have to regularly deliver cargo to it as well as ship cargo off of it. A new idea from Lunar Cargo, a company based in Europe, has come up with a novel, patented way to deliver cargo to the Moon - the Momentum Absorption Catcher for Express Deliveries on Non-Atmospheric Somata, or M.A.C.E.D.O.N.A.S.
Planetary Scientists Confirm There's No Flowing Water on Mars
It was big news years ago when Mars orbiters found streaks of what appeared to be water running down Martian cliffs and crater walls. Scientists worked hard to figure out what they were. Some proposed that they were seasonal streaks of briny ice, melting as the weak Mars summer arrived. New research says no to that.
A CubeSat Propulsion System to Visit Near Earth Objects
In recent years, humanity has visited several near-Earth asteroids (NEAs), including Ryugu (Hayabusa2) and Didymos (DART). However, we will need more frequent missions to start gathering more helpful information about this class of over 37,000 space rocks. CubeSats have off-the-shelf components and a relatively small size, making them a potentially good candidate for such an exploration program. But how would they reach these asteroid locations given their relatively limited payload and propulsion capacity? That is the focus of a new paper from Alessandro Quarta of the University of Pisa. He looks at potential trajectory planning for CubeSats given one of several configurations of ion drives. He shows how many NEAs can be accessed by simply entering a heliocentric orbit and awaiting the asteroid's arrival as part of its orbit.
Monday, May 19, 2025
Astronomers Can Classify Satellites By Watching How They Block Stars
The satellite population in Low-Earth Orbit (LEO) is not an open book. While data on many satellites is public, others are shrouded in secrecy, and information is incomplete for others. New research shows how observers can determine satellite shapes by watching them occult background stars.
Sunday, May 18, 2025
Meteor Impacts on Mars Can Excavate its Secrets
Spacecraft orbiting Mars can reveal small features on the planet's surface, but there are only so many things you can see from above. When a meteor strikes the surface of Mars, it can excavate sub-surface material, allowing scientists to study what lies beneath. Researchers have simulated various impacts on Mars, changing the sub-surface material from bedrock to water-ice glaciers, and then calculated what should be visible after an impact, enabling new science.
Saturday, May 17, 2025
Astronauts Could See Auroras on Mars with their Eyes
Earth's magnetosphere channels particles from solar storms into stunning auroras. Mars lacks a planet-wide magnetic field and has patchy auroras barely detectable with instruments. Or so we thought. New images captured by NASA's Perseverance Rover with its Mastcam-Z instrument show green auroras in visible light. When humans finally walk on Mars and look to the skies, they could possibly see faint auroras there, too.
Friday, May 16, 2025
A Lunar Telescope that Could Explore the Cosmic Dark Ages
In a recent paper, an international team proposed an ultra-long wavelength radio interferometer that could examine the Cosmic Dark Ages and Cosmic Dawn. Known as the Dark Ages Explorer (DEX), this telescope could provide fresh insights into how and when the first stars and galaxies formed.
The Deepening Mystery Around the JWST's Early Galaxies
When the JWST came to life and began observations, one of its first jobs was to gaze back in time at the early Universe. The Assembly of Galaxies is one of the space telescope's four main science themes, and when it observed the Universe's first galaxies, it uncovered a mystery. According to our understanding of how galaxies evolve, some were far more massive than they should be.
Thursday, May 15, 2025
The Milky Way's Globular Clusters Formed at the Dawn of the Universe
We don't have to rely solely on the JWST to observe the Universe's oldest stars. Some of the oldest stars in the Universe reside in globular clusters, and the Milky Way has about 150 of them. How old exactly? New research has the answer.
Friday, May 9, 2025
Space Weather Can Dramatically Alter a Planet's Fate
We tend to think of habitability in terms of individual planets and their potential to host life. But barring outliers like rogue planets with internal heating or icy moons with subsurface oceans created by tidal heating, it's exoplanet/star relationships that generate habitability, not individual planets. New research emphasizes that fact.
This Supermassive Black Hole Chases its Food
Supermassive Black Holes reside at the center of large galaxies, where they dominate their surroundings and sometimes eat stars. When they gobble up a star, they emit a distinctive light flare. This makes it easier for astronomers to pinpoint their location. Astronomers have detected one of these flares offset from a galactic center. Is the black hole shifting its location?
Thursday, May 8, 2025
Quasars Don't Last Long. So How Do They Get So Massive?
One of the unanswered questions in astronomy is just how supermassive black holes grew so big, so quickly. A team of astronomers have tried to answer this question by searching for actively feeding supermassive black holes (aka quasars) as a way to measure how much material material they are actually accumulating. They studied nebulae near the quasars that light up with the quasar is releasing radiation and found that many of the more distant quasars have only been active for a few hundred thousand years, not long enough to grow to the size we see today.
The Nancy Grace Roman Space Telescope Could Study Dying Planets
The Nancy Grace Roman Space Telescope Could Study Dying Planets
How Do the Most Massive Stars Get So Big?
The most massive stars in the Milky Way contain one hundred times more mass than the Sun, even more in some cases. These O-type stars are extremely hot, luminous, and blue, and often die in supernova explosions. Astrophysicists want to know how they get so big, and a simple household chemical might hold the answer.
Wednesday, May 7, 2025
Mars Has Many Features that Match Earth
Researchers have identified several features on Mars that look surprisingly similar to conditions on Earth. One notable feature is giant wave-like landforms called solifluction lobes, which are in cold, mountainous regions of Earth, like the Arctic or Rocky Mountains. These are slow-moving patterns similar to fluids running downhill, but on Mars, they're 2.6 times larger because of its lower gravity. They can grow much taller before collapsing on Mars.
A Single Impact Could Leave a Giant Planet Ringing for Millions of Years
To understand how chaotic the early Solar System was, we need only gaze at the Moon. Its cratered surface bears the scars from multitudes of collisions. The early Solar System was like a debris field where objects smashed into each other in cascades of collisions. The same must be true in all young solar systems, and in a new paper, researchers simulated a collision between two massive planets to see what would happen.
Tuesday, May 6, 2025
Improving In-Situ Analysis of Planetary Regolith with OptiDrill
What new technologies or methods can be developed for more efficient in-situ planetary subsurface analyses? This is what a recent study presented at the 56th Lunar and Planetary Science Conference hopes to address as a team of researchers investigated how a novel instrument called OptiDrill could fill existing technological voids regarding the sampling and collection of regolith (top dust layer) and subsurface samples on a myriad of planetary bodies throughout the solar system.
Webb Watches Dramatic Weather Changes on a Pair of Nearby Brown Dwarfs
When astronomers want to understand brown dwarfs, they often turn to WISE 1049AB. It's a benchmark brown dwarf in astronomy, and the closest and brightest brown dwarf we know of. The binary pair, which is also known as Luhman 16, is about 6.5 light-years away. Brown dwarfs are a crucial bridge between planets and stars, and understanding them helps astronomers understand the dynamics of both exoplanets and stars.
The Nancy Grace Roman Space Telescope Could Study Dying Planets
The Nancy Grace Roman Space Telescope Could Study Dying Planets
Free Floating Binary Planets Can't Last Long
The JWST continues to live up to its promise by revealing things hidden from other telescopes. One of its lesser-known observations concerns Free-Floating Planets (FFP). FFPs have no gravitational tether to any star and are difficult to detect because they emit so little light. When the JWST detected 42 of a particular type of FFP in the Orion Nebula Cluster, it gave astronomers an opportunity to study them more closely.
Monday, May 5, 2025
The Most Common Type of Exoplanet Was Difficult To Observe Until the JWST Came Along
The idea that our Solar System is representative of other solar systems hasn't survived the age of exoplanet discovery. Kepler and TESS have shown us that our system doesn't even contain the most common type of planet: sub-Neptunes. These planets pose a mystery to planetary scientists, and the JWST is helping unravel the mystery.
Using the Solar Gravitational Lens Will Be Extremely Difficult
The solar gravitation lens (SGL) has much potential as a telescope. This point in space, located about 650 AU away from the Sun, uses fundamental properties of physics to amplify the light from extremely far-away objects, allowing us to see them at a level of detail unachievable anywhere else. However, any SGL mission would face plenty of technical and physical challenges. A new paper by independent researcher Viktor Toth is the latest in a series that discusses those challenges when imaging a far-away exoplanet, and in particular, looks at the difficulties in dealing with potential moving cloud cover. He concludes that using the SGL might not be the most effective way of capturing high-resolution images of an exoplanet, after all.
A Fast-Moving Pulsar Fractures the Milky Way's Galactic Bone
The center of the Milky Way is a busy place, tightly packed with stars and dominated by the supermassive black hole Sagittarius A*. It also features powerful magnetic fields that regulate star production, influence gas dynamics and gas cloud formation, and even affect the accretion processes around Sagittarius A*. Gigantic filaments of gas that look like bones form along the magnetic field lines, and one of them appears to be fractured.
African Space Agency takes flight
On 20 April, 2025, the African Space Agency (AfSA) was formally launched at an inauguration ceremony in Cairo, Egypt. The decision to create AfSA was made by the African Union (AU) in 2016 to coordinate the continent's approach to space, and enact the African Space Policy and Strategy. AfSA will coordinate African space cooperation with Europe and other international partners.
Friday, May 2, 2025
The White House Releases its 2026 Budget Request for NASA. Cuts to SLS, Gateway and Orion
The White House Releases its 2026 Budget Request for NASA. Cuts to SLS, Gateway and Orion
Kardashev Type 2 Civilizations Might Be An Unsustainable Fantasy
We tend to think of Extraterrestrial Intelligences (ETIs)—if they exist—as civilizations that have overcome the problems that still plague us. They're advanced, peaceful, disease-free technological societies that enjoy absolute political stability as they accomplish feats of impeccable engineering. Can that really be true in a Universe where entropy sets the stage upon which events unfold?
Juno Continues to Teach us About Jupiter and Its Moons
The Juno spacecraft circling in Jovian space is the planetary science gift that just keeps on giving. Although it's spending a lot of time in the strong (and damaging) Jovian radiation belts, the spacecraft's instruments are hanging in there quite well. In the process, they're peering into Jupiter's cloud tops and looking beneath the surface of the volcanic moon Io.
Thursday, May 1, 2025
Scientists Gain a New Understanding of How Stars and Planets Form
As young stars form, they exert a powerful influence on their surroundings and create complex interactions between them and their environments. As they gobble up gas and dust, they generate a rotating disk of material. This protoplanetary disk is where planets form, and new research shows that stars can feed too quickly and end up regurgitating material back into the disk.
JWST Sees How Methanol Evolves in the Outer Solar system
Understanding how life started on Earth means understanding the evolution of chemistry in the Solar System. It began in the protoplanetary disk of debris around the Sun and reached a critical point when life appeared on Earth billions of years ago. Close to the Sun, the chain of chemical evidence is broken by the Sun's radiation. But further out in the Solar System, billions of kilometres away, some of that ancient chemistry is preserved.
New Research Traces Heavy Elements to Collapsing Stars
A team of researchers led by the Los Alamos National Laboratory examined the possibility that the jets coming from collapsing stars could be responsible for creating the heaviest elements in the Universe.
Wednesday, April 30, 2025
JWST May Have Found a Supermassive Black Hole in the Southern Pinwheel Galaxy
We know that our Milky Way galaxy hosts a supermassive black hole (SMBH) in its center. Astronomers think most spiral galaxies do, and that SMBHs coexist and co-evolve with their host galaxies. However, they haven't been able to find them in all spirals. M83, the Southern Pinwheel Galaxy, has always been puzzling because scientists haven't seen any evidence of an SMBH in its center. The JWST may have finally found some.
The GEO600 Gravitational Wave Detector is Getting a Big Upgrade
Astronomy has entered the age of gravitational waves. While there are plenty of differences between gravitational wave astronomy and typical waves of the electromagnetic spectrum, they share one similar feature: frequency. While we have detectors for a wide range of electromagnetic frequencies, gravitational wave detectors only focus on a narrow band of relatively low-frequency signals. That will change with the upgrade of the GEO600 gravitational wave detector located at the Max Planck Institute for Gravitational Physics.