Thursday, February 29, 2024

This Planet-Forming Disk has More Water Than Earth’s Oceans

Astronomers have detected a large amount of water vapour in the protoplanetary disk around a young star. There’s at least three times as much water among the dust as there is in all of Earth’s oceans combined. And it’s not spread throughout the disk; it’s concentrated in the inner disk region.

No water means no life, so finding this much water in the part of a protoplanetary disk where rocky planets form is an intriguing discovery. And this isn’t just any disk. It’s a cold, stable disk, the type most likely to form planets.

The findings are presented in a new paper published in Nature Astronomy. It’s titled “Resolved ALMA observations of water in the inner astronomical units of the HL Tau disk.” The lead author is Stefano Facchini, an astronomer at the Dipartimento di Fisica, Università degli Studi di Milano, Milano, Italy.

“I had never imagined that we could capture an image of oceans of water vapour in the same region where a planet is likely forming,” said Facchini.

The star, HL Tau (HL Tauri), is a young star about 450 light-years away. It’s likely less than 100,000 years old, making it a prime observing target in the quest to understand planet formation. When it comes to seeing inside the gas and dust surrounding young stars like this, ALMA is our best tool. One of ALMA’s first high-resolution images is of HL Tau and its disk. The image shows rings in the disk that indicate where young planets are probably forming.

This is the sharpest image ever taken by ALMA — sharper than is routinely achieved in visible light with the NASA/ESA Hubble Space Telescope. It shows the protoplanetary disc surrounding the young star HL Tauri. These new ALMA observations reveal substructures within the disc that have never been seen before and even show the possible positions of planets forming in the dark patches within the system. Image Credit: ALMA
This is the sharpest image ever taken by ALMA — sharper than is routinely achieved in visible light with the NASA/ESA Hubble Space Telescope. It shows the protoplanetary disc surrounding the young star HL Tauri. These new ALMA observations reveal substructures within the disc that have never been seen before and even show the possible positions of planets forming in the dark patches within the system. Image Credit: ALMA

HL Tau has always intrigued scientists, and now that they’ve detected such a large amount of water vapour in its planet-forming disk, the young star is an even more compelling target for observations.

“These observations pave the way to the characterization of the water content of the inner regions of protoplanetary disks,” the researchers write in their paper. “The tremendous angular resolution and sensitivity of the ALMA telescope, even in spectral ranges of low atmospheric transmission, are providing spatially and spectrally resolved images of the vapour of the main water isotopologue in a planet-forming disk.”

Not only did ALMA detect the water, but it also determined where it is in the disk and how much of it there is. “Our analysis implies a stringent lower limit of 3.7 Earth oceans of water vapour available within the inner 17 astronomical units of the system,” the researchers write in their paper.

When planets take shape in a protoplanetary disk like the one around HL Tauri, they clear out lanes in the dust. Nothing else is likely to create the tell-tale gaps that signal the presence of young, still-forming planets. We have the powerful ALMA to thank for this understanding.

“It is truly remarkable that we can not only detect but also capture detailed images and spatially resolve water vapour at a distance of 450 light-years from us,” said study co-author Leonardo Testi, an astronomer at the University of Bologna, Italy. The spatial resolution Testi is referring to is thanks to ALMA. The radio interferometer allowed astronomers to see how the water vapour is distributed throughout the disk. “Taking part in such an important discovery in the iconic HL Tauri disc was beyond what I had ever expected for my first research experience in astronomy,” added Mathieu Vander Donckt from the University of Lie?ge, Belgium, a master’s student when he participated in the research.

ALMA is a radio interferometer, meaning it observes wavelengths from 0.3 mm to 3.6 mm, which correspond to the range from 84 GHz to 950 GHz. In this study, the researchers observed different “flavours” of water molecules at different temperatures. “We observed HL Tau in two different ALMA bands (band 5, originally developed with the goal of studying water in the local Universe, and band 7) to target three transitions of water,” the researchers explain.

This figure from the research illustrates some of the findings. The blue line is water detected by ALMA at 321 GHz, a high-excitation state for water vapour. The yellow line is water detected at 183 MHz, an important diagnostic line used in remote sensing of water vapour. Both lines indicate more water vapour in the inner regions of the disk. Image Credit: Facchini et al. 2024.
This figure from the research illustrates some of the findings. The blue line is water detected by ALMA at 321 GHz, a high-excitation state for water vapour. The yellow line is water detected at 183 MHz, an important diagnostic line used in remote sensing of water vapour. Both lines indicate more water vapour in the inner regions of the disk. Image Credit: Facchini et al. 2024.

The observations didn’t just find water in the inner region where rocky planets form. It found water in one of the gaps that indicate a planet is sweeping up disk material and adding it to its mass. “Our recent images reveal a substantial quantity of water vapour at a range of distances from the star that includes a gap where a planet could potentially be forming at the present time,” said Facchini. The natural conclusion is that the water is becoming part of the planet.

These results are all thanks to ALMA’s power. It’s the only facility we have that can detect water in a disk like this. “To date, ALMA is the only facility able to spatially resolve water in a cool planet-forming disc,” said study co-author Wouter Vlemmings, a professor at the Chalmers University of Technology in Sweden.

ALMA’s different observational frequencies capture water as it transitions, and part of this research looks at water as it’s liberated from dust particles. The relationship between water and dust in a planet-forming disk is important. Where it’s cold enough for water to freeze onto dust particles, the particles stick together more readily, aiding the planet formation process.

“It is truly exciting to directly witness, in a picture, water molecules being released from icy dust particles,” said Elizabeth Humphreys, an astronomer at ESO who also participated in the study.

Some of what astronomers see in the disk around HL Tauri is like a window into the past. Our planet formed in a similar way, and the same processes and mechanisms must be similar from disk to disk.

“Our results show how the presence of water may influence the development of a planetary system, just like it did some 4.5 billion years ago in our own Solar System,” Facchini said.

ALMA really flexed its muscles in this work, and the facility has played a primary role in our study of protoplanetary disks around young stars. But upcoming telescopes will surpass ALMA and give us even deeper, more detailed looks inside the dusty, obscured disks. The Extremely Large Telescope is due to see first light in 2028. Its powerful METIS (Mid-infrared ELT Imager and Spectrograph) will give us unprecedented insight into the process of planet formation.

The post This Planet-Forming Disk has More Water Than Earth’s Oceans appeared first on Universe Today.



When an Object Like ‘Oumuamua Comes Around Again, We Could be Ready With an Interstellar Object Explorer (IOE)

On October 19th, 2017, astronomers with the Pann-STARRS survey observed an Interstellar Object (ISO) passing through our system – 1I/2017 U1 ‘Oumuamua. This was the first time an ISO was detected, confirming that such objects pass through the Solar System regularly, as astronomers predicted decades prior. Just two years later, a second object was detected, the interstellar comet 2I/Borisov. Given ‘Oumuamua’s unusual nature (still a source of controversy) and the information ISOs could reveal about distant star systems, astronomers are keen to get a closer look at future visitors.

For instance, multiple proposals have been made for interceptor spacecraft that could catch up with future ISOs, study them, and even conduct a sample return (like the ESA’s Comet Interceptor). In a new paper by a team from the Southwest Research Institute (SwRI), Alan Stern and his colleagues studied possible concepts and recommended a purpose-built robotic ISO flyby mission called the Interstellar Object Explorer (IOE). They also demonstrate how this mission could be performed on a modest budget with current spaceflight technology.

The study was conducted by Alan Stern, the Principal Investigator for NASA’s New Horizons missions, and his colleagues at the Southwest Research Institute (SwRI) in Boulder, Colorado. This included Principal Scientist Silvia Protopapa, manager Matthew Freeman, researcher/director Joel Parker, and systems engineer Mark Tapley. They were joined by Cornell Research Associate Darryl Z. Seligman and Caden Andersson, a researcher with Colorado-based company Custom Microwave Inc. (CMI). Their paper appeared on February 5th, 2024, in the journal Planetary and Space Science.

The Vera C. Rubin Observatory is under construction at Cerro Pachon in Chile. The observatory should be able to spot interstellar objects like ‘Oumuamua. Credit: Wil O’Mullaine/LSST

Interstellar Objects (ISOs) Abound!

Since ‘Oumuamua first buzzed our system, scientists have assigned a high value to ISOs, which represent material ejected from other solar systems. By obtaining samples and studying them up close, we could learn much about the formation of other stars and planets without actually sending missions there. We could also learn a lot about the interstellar medium (ISM) and how organic material, and maybe even the building blocks for life, are distributed throughout the galaxy (aka. Panspermia Theory). As they state in their paper:

“ISOs represent the leftovers from the formation of planetary systems around other stars. As such, their study offers critical new insights into the chemical and physical characteristics of the disks from which they originated. Additionally, a comprehensive analysis of their composition, geology, and activity will shed light on the processes behind the formation and evolution of planetesimals in other solar systems.

“Close encounters with small bodies in our solar system have vastly enhanced our understanding of these objects, contextualized our ground-based observations, and advanced our knowledge of planetesimal formation models. Similarly, a close flyby of an ISO promises to be equally transformative. It stands as the logical next step in exploring the early history of both our Solar System and exoplanetary systems.”

Moreover, population studies of ISOs have indicated that about seven pass through our Solar System every year. Meanwhile, other research has shown that some are periodically captured and are still here. With next-generation instruments becoming operational, scientists anticipate that there will be a significant increase in the rate of ISO discoveries in the late 2020s and the 2030s. This includes the Vera C. Rubin Observatory currently under construction in Chile, which is expected to gather its first light in January 2025.

Researchers anticipate the observatory will gather data on more than 5 million Asteroid Belt objects, 300,000 Jupiter Trojans, 100,000 near-Earth Objects (NEOs), and more than 40,000 Kuiper Belt objects. They also estimate that it will detect about 15 interstellar objects in its first ten-year run, known as the Legacy Survey of Space and Time (LSST) – though other estimates say up to 70 ISOs a year. For their study, Stern and his colleagues assume that any ISOs within a distance of about twice the distance between Earth and the Sun (2 AU) would be bright enough to be detectable by the LSST.

‘Oumuamua (l) and 2I/Borisov (r) are the only two ISOs we know of for certain. Image Credit: (left) ESO/M. Kornmesser; (right) NASA, ESA, and D. Jewitt (UCLA)

Objectives and Instruments

As Stern and his colleagues explain in their paper, their proposed IOE would have two main science objectives. These include determining the “composition of the ISO to provide insights into its origin and evolution.” As noted, these studies would provide invaluable information on the initial conditions of the ISO’s host solar system. In this respect, the IOE would provide information similar to what the New Horizons mission revealed about the Kuiper Belt Object (KBO) Arrokoth or how the ESA’s Rosetta mission detected the building blocks of life in the comet 67P/Churyumov–Gerasimenko.

Second, the IOE would determine or constrain the “nature, composition, and sources of the ISO coma activity and determine the processes responsible for [the] observed activity.” Typically, coma activity results from ice sublimating as objects approach a star, which releases dust grains and refractory organic molecules from the nucleus. As previous observations have shown, the activity of comets depends on solar heating and the comet’s own physical characteristics. As Stern and colleagues expressed in their paper:

“By characterizing the composition and spatial distribution of an ISO’s coma, IOE can directly determine the primary components of its target ISO, identify the mechanisms behind coma activity, and deepen our insights into the composition and processes extant in its protoplanetary formation disk, where planetesimals like it were forming… Furthermore, comparing the physical properties (i.e., the chemical composition, size distribution, type of mixing) of ices and refractories in the coma with those on the surface can provide insights into potential processes that may have modified the surfaces.”

Based on these science objectives, Stern and his colleagues listed what instruments the IOE would need. These include:

  • A panchromatic visible-wavelength imager with arcsecond-class angular resolution and high dynamic range
  • A visible-wavelength imager with three filters (min) and an infrared imaging spectrometer that spans the 1–2.5 um wavelength range (possibly up to 4 um) with a resolving power of at least 100
  • An ultraviolet (UV) spectrometer spanning the wavelength range of 700–1970 angstrom (Å) with a spectral resolution of equal or greater than 20 Å
  • A panchromatic visible-wavelength imager and UV and infrared imaging spectrometers
Artist’s impression of a swarm of laser sail spacecraft arriving at ‘Oumuamua, the interstellar asteroid. Credit: Maciej Rebisz

Mission Profile

Next up is the design of the spacecraft itself, which is dictated by the ephemeral nature of ISOs. As ‘Oumuamua and Borisov demonstrated, the velocity of ISOs means that they are likely to remain undetected until they are close to the inner edge of the Main Asteroid Belt. In addition, their hyperbolic trajectories mean that they are likely to zip around our Sun and become unreachable shortly after they are detected. Last, there’s the positioning of the intercept mission itself, which directly affects the spacecraft’s ability to deploy and reach the target ISO.

For their study, Stern and his team selected a “storage orbit” location at the Earth-Moon L1 Lagrange Point, located between the Earth and Moon. This location has several advantages, most notably how a spacecraft positioned will need to generate very little thrust to achieve escape velocity – meaning that most of its available acceleration (delta-v) will be put towards its intercept trajectory. This storage orbit also means less propellant and less time is needed to get underway, and allows for a quick gravitational assist from a near-Earth flyby.

For their study, Stern and his team set a detectability limit of 2 AU and simulated ISOs with a mean velocity of 32.14 km/s (~20 mps) and a closest solar approach of 10 AU or less. Other constraints that were considered included the positions of the Earth and ISO at the time of its detection, the ISO’s orbit parameters, the maximum distance that a mission could intercept an ISO (aka. the “heliocentric radius of intercept”), and the relative velocity between the spacecraft and ISO. To effectively analyze this data, the team generated an algorithm to optimize the intercept trajectory and establish a small subset of ISOs that could feasibly be intercepted.

They simulated all of these calculations over a period of 10 years and (using previous missions as precedents) derived several key parameters. As they established, the mission would need to be capable of an acceleration (delta-v) of 3.0 km/s, establish a minimum flyby altitude of 400 km (~250 mi), intercept the ISO within 3 AUs of the Sun, and achieve a flyby velocity of 100 km/s (62 mps). With this “detectability sphere” established, they found that the chances for a successful intercept increased considerably at higher velocities – 3 to 3.9 km/s (1.86 to 2.4 mps) – and at distances closer to 3 AU.


The study of ISOs is a burgeoning field of astronomical research encompassing next-generation observatories (like Vera Rubin) and proposed intercept missions. In addition to the IOE, similar concepts have been proposed since the detection of ‘Oumuamua and 2I/Borisov – including Project Lyra, a proposal made by the Institute for Interstellar Studies (i4is). While such a mission may be years from realization, detailed studies such as this will help inform the next phase of development – the designing and testing of mission concepts themselves.

Stern and his colleagues acknowledge that more research is needed before this can happen but emphasize that their work is an important first step. “More detailed work will be needed next to better prepare the mission concept to be proposed to a future NASA mission opportunity,” they write, “but this report provides the mission’s basic objectives, key requirements, and attributes as a starting point.”

Further Reading: Planetary and Space Science

The post When an Object Like ‘Oumuamua Comes Around Again, We Could be Ready With an Interstellar Object Explorer (IOE) appeared first on Universe Today.



How We Get Planets from Clumping Dust

Our gleaming Earth, brimming with liquid water and swarming with life, began as all rocky planets do: dust. Somehow, mere dust can become a life-bearing planet given enough time and the right circumstances. But there are unanswered questions about how dust forms any rocky planet, let alone one that supports life.

Planets form inside protoplanetary disks, the massive rotating collections of gas and dust that swirl around young stars. Rocky planets form when dust clumps together, which in turn forms larger and larger bodies. Eventually, there are planetesimals, the true building blocks of planets.

A protoplanetary disc surrounds the young star HL Tauri, as shown by ALMA. ALMA reveals some of the substructures in the disk, like gaps where planets are forming. We know they form in these disks, but there are outstanding questions about that complex process. Image Credit: ESO/ALMA
A protoplanetary disc surrounds the young star HL Tauri, as shown by ALMA. ALMA reveals some of the substructures in the disk, like gaps where planets are forming. We know they form in these disks, but there are outstanding questions about that complex process. Image Credit: ESO/ALMA

How exactly does the dust clump together in these disks?

There are two processes that allow dust grains to form larger and larger structures. One is coagulation, where dust grains collide with one another in the disk and stick together.

The other process is called streaming instability. In this process, dust grains moving through the protoplanetary disk experience drag. This concentrates them into loose clumps, which eventually self-collapse. “If these clumps are massive enough, planetesimals could form by the self-gravitational collapse of the clump,” explains Ryosuke Tominaga of the RIKEN Star and Planet Formation Laboratory.

Tominaga is the co-author of new research published in The Astrophysical Journal titled “Rapid Dust Growth during Hydrodynamic Clumping due to Streaming Instability.” Tominaga’s co-author is Hidekazu Tanaka from the Astronomical Institute Graduate School of Science at Tohoku University in Sendai, Japan.

“There are two promising processes for planetesimal formation: direct collisional growth of dust grains and gravitational collapse of a dust layer,” the authors write in their paper. “Our results highlight the importance of numerical simulations that consider both coagulation and streaming instability.”

Tominaga and Tanaka examined the planetesimal formation process by creating models that simulate dust grains in protoplanetary disks. The models took into account factors like dust grain stickiness, the size of the grains, and their speed. Speed is critical since some previous research shows that if dust is moving too quickly, the grains won’t stick together.

“Some studies have suggested that dust grains are not so sticky and that their growth may be limited by fragmentation in planet-forming regions because of high collision velocities,” Tominaga said. “This is thought to be one barrier preventing dust growth toward planetesimals.”

The models compared the time scales for dust clumps to grow by both processes: coagulation and streaming instability. The results showed that both of them occur at similar rates. In fact, the pair are in a feedback loop. Coagulation speeds up streaming instability and vice-versa. “Dust growth enhances the clumping efficiency, while stronger clumping promotes dust growth,” says Tominaga. “This feedback has been predicted to promote planetesimal formation.” Even a moderate increase in dust density because of streaming instability promotes dust coagulation.

“If a sufficient amount of large dust grains form and settle, planetesimal formation via gravitational instability will occur,” write Tominaga and Tanaka in their paper.

This research shows how both processes work together to form planetesimals and, eventually, planets. But there’s a lot of detail yet to be revealed before a more complete picture emerges.

An image of Earth taken by the Galileo spacecraft in 1990. It's hard to grasp how the accumulation of dust grains led, eventually, to a planet like Earth. Credit: NASA/JPL
An image of Earth taken by the Galileo spacecraft in 1990. It’s hard to grasp how the accumulation of dust grains led, eventually, to a planet like Earth. Credit: NASA/JPL

Dust drift is one of the factors at work in a protoplanetary disk. Some dust moves toward the central star and is destroyed before it can grow. But clumping also leads to reduced drift.

The speed at which the bulk of the dust is moving is another factor. When combined with local turbulence, dust speed affects how easily grains can stick together and how quickly clumps can form.

Models like the ones in this research are useful tools for understanding what’s happening in a planet-forming disk. Better observations of planets forming inside these disks are the critical evidence needed to flesh out our understanding, but that’s difficult to achieve.

We know there are planets forming in these disks, but the formation process is hidden by gas and dust and by how far away young stars with protoplanetary disks are. But more powerful telescopes are always being designed, and better techniques for probing these disks are always being developed.

One day, astronomers will have an even clearer understanding of how rocky planets form, including ours.

The post How We Get Planets from Clumping Dust appeared first on Universe Today.



A Nova in the Making: Will T Coronae Borealis Pop in 2024?

If predictions are correct, a key outburst star could put on a show in early 2024.

If astronomers are correct, a familiar northern constellation could briefly take on a different appearance in 2024, as a nova once again blazes into prominence. The star in question is T Coronae Borealis, also referred to as the ‘Blaze Star’ or T CrB. Located in the corner of the constellation Corona Borealis or the Northern Crown, T CrB is generally at a quiescent +10th magnitude, barely discernible with binoculars… but once every 60 years, the star has flared briefly into naked eye visibility at around +2nd magnitude.

Finder
Finding T CrB in the sky. Credit: Stellarium

The Curious Case of T Coronae Borealis

The enigma that is T Coronae Borealis was first noted by Irish astronomer John Birmingham on the night of May 12, 1866. Observers later scoured the region for decades to come, until hitting pay-dirt with a second flare-up from the star once again in 1946. None other than astronomer Leslie Peltier of Starlight Nights fame witnessed the 1946 outburst. A recent study by Bradley Shaefer Louisiana State University in 2023 suggests that a bright ‘guest star’ seen in 1217 and again in 1787 in the same region mentioned in medieval manuscripts may in fact have been apparitions of T CrB.

Light Curve
The light curve from the 1946 outburst. Wikimedia Commons CCA 4.0, compiled from AAVSO data.

We now know that T Coronae Borealis is what’s known as a recurrent nova. This occurs when a white dwarf companion star orbiting a red giant siphons off material, which accretes and compresses around the white dwarf star. This accumulates on the white dwarf, until it reaches a limit where runaway fusion occurs, and it shines briefly as a nova. Recurrent novae are rare, and less than 10 are known of in our galaxy.

Recurrent Nova
A list of known recurrent novae. From The Backyard Astronomer’s Deep-Sky Field Guide by David Dickinson

An Outburst for 2024?

This seems to suggest a periodicity of 80 years for the Blaze Star, suggesting another appearance running up to 2026. A suspicious dimming recorded in 2023, however, is now giving astronomers pause. The star behaved the same way in 1945, about a year prior to outburst. Astronomers are now hoping that we’ll see T CrB brighten this year.

Located about 3,000 light-years distant, the white dwarf in the T CrB system orbits the red giant once every 228 days at just 0.54 Astronomical Units distant, inclined 67 degrees along our line of sight. Flare ups tend to happen quickly—over a span of mere hours—and last a maximum of just a day or so. Keep in mind, a change of eight magnitudes is equal to over 1,500 times in terms of brightness.

A recurrent nova
A recurrent nova in the making. Credit: NASA

The American Association of Variable Star Observers (AAVSO) has a long running campaign to follow T CrB, and NASA’s Neil Gehrels Swift Observatory and Hubble are also on alert to follow the Blaze Star, as an outburst would provide an unprecedented opportunity to monitor such an astrophysical event in gamma-rays and across the spectrum. Hubble may also manage to catch the light echo from the event.

Finding T Coronae Borealis in the Sky

The very worst time for T CrB to pop would be in late November, when the pesky Sun sits at the same Right Ascension in the sky. Right now, Corona Borealis is well-placed for observation rising in the northeast late in the evening. T CrB is located very near +4th magnitude Epsilon Coronae Borealis and at its peak, could rival the brightest star in the constellation: +2nd magnitude Alphecca (Alpha Coronae Borealis).

If skies are clear, keep an eye on the Northern Crown in the coming months. Who knows, you might be the first observer to spy if something is amiss in the sky.

The post A Nova in the Making: Will T Coronae Borealis Pop in 2024? appeared first on Universe Today.



Wednesday, February 28, 2024

Odysseus Is Going to Sleep After Sending Snapshots From Moon Landing

Intuitive Machines says it’s putting its Odysseus moon lander to bed for a long lunar night, with hopes of reviving it once the sun rises again near the moon’s south pole.

The Houston-based company and NASA recapped Odysseus’s six days of operation on the lunar surface, shared pictures showing its off-kilter configuration, and looked ahead to the mission’s next phase during a briefing today at Johnson Space Center in Texas.

The original plan called for the solar-powered spacecraft to be turned off when the sun fell below the lunar horizon, but Intuitive Machines CEO Steve Altemus said mission controllers would instead put the Odysseus into hibernation and try restoring contact in three weeks’ time. “We are going to leave the computers and the power system in a place where we can wake it up and do this development test objective, to actually try to ping it with an antenna and see if we can’t wake it up once it gets power again,” he told reporters.

Last week, Odysseus became the first-ever commercial spacecraft to survive a descent to the lunar surface, and the first U.S.-built spacecraft to do so since NASA’s Apollo 17 mission in 1972. NASA struck a deal to pay Intuitive Machines $118 million to deliver six science instruments to the lunar surface under the terms of its Commercial Lunar Payload Services initiative, or CLPS.

Sue Lederer, NASA’s project scientist for CLPS at Johnson Space Center, said every one of NASA’s payloads has met “some level of their objectives, and we’re very excited about that.”

NASA’s deputy associate administrator for exploration, Joel Kearns, said the space agency considered the mission to be a success despite the difficulties encountered during Odysseus’ landing. He also said the mission validated NASA’s strategy of enlisting private companies to provide robotic rides to the moon.

“It’s an exciting time to be on Day 6 of this new era in the 21st century,” Kearns said.

The new era has had more than its fair share of challenges. Tim Crain, who serves as Intuitive Machines’ chief technology officer as well as Odysseus’s IM-1 mission director, said there were at least 11 do-or-die moments along the way.

One of the most critical challenges came when the mission team discovered that the lander’s laser range-finding system couldn’t be activated for the Feb. 22 landing, due to a safety lock that wasn’t deactivated before the Feb. 15 launch.

Engineers came up with what they thought would be a last-minute fix. That involved connecting one of NASA’s payloads, an experimental laser range-finding system, to Odysseus’s internal guidance system.

However, when the Odysseus team later reconstructed the events leading up to the landing, they found out that the readings from the NASA system couldn’t be processed because they lacked a required data-verification code, Crain said. Instead, the lander had to rely on its inertial measurement unit and its optical navigation system.

That appears to explain why Odysseus’s landing was rougher than expected. “The flight dynamics guys calculate that we actually came down just short of our [intended] landing site, at a higher elevation than where our landing site was going to be,” Altemus said.

As a result, Odysseus came down to the surface at a higher downward velocity, with extra sideward velocity as well. “We hit harder, and sort of skidded,” Altemus said.

An ultra-wide-field version of an image sent back by the Odysseus moon lander during its Feb. 22 touchdown shows a landing leg breaking off and moon dirt being kicked up by engine exhaust. (Credit: Intuitive Machines)

One of the pictures released today shows Odysseus skidding to a stop, with pieces of a landing leg breaking off. “The landing gear did what it was supposed to do and protected the lander as it landed on the surface,” Altemus said.

The image also shows plumes of moon dirt spraying away from the blast of Odysseus’s engine. The lander was able to stay upright as long as its engine kept firing. “And then, as it wound down, the vehicle just gently tipped over,” Altemus said.

Crain said Odysseus’s inability to use its primary laser range-finding system was a big loss. “If we would have had the laser range-finders, we would have nailed the landing,” he said.

Instead, Odysseus is lying at a 30-degree angle, in such a way that its main solar array isn’t able to soak up as much sunlight as planned. Moreover, some of its antennas are pointing toward the ground.

The misalignment of the antennas created another problem: “Our signals were bouncing off the moon,” Crain said, and that made it harder for the team to decipher the signals that were received at ground stations around the globe.

This Feb. 27 image from Odysseus’s narrow-field-of-view camera shows the lander leaning off-kilter on the lunar surface. The prominent orange feature is a helium tank. (Credit: Intuitive Machines)

Eventually, engineers figured out how to compensate for the scrambled signals — and they mounted a full-court press to get as much data down as fast as they could. Lederer said that made a huge difference.

“Instead of ending up with a few bytes of data, which was a baseline goal for us, we’ve gotten over 50 megabytes of data,” she said. “We went from basically a cocktail straw of data coming back to a boba-tea straw of data coming back.”

The data from NASA’s payloads will help the space agency plan for follow-up robotic missions in the CLPS program — including Intuitive Machines’ IM-2 mission, which could be launched later this year. Such missions are meant to set the stage for the Artemis program’s first crewed trip to the lunar south polar region, scheduled for as early as 2026.

Odysseus also carried six private-sector payloads to the lunar surface. One of the payloads is a mini-camera system that was built by faculty and students at Embry-Riddle Aeronautical University. The system, known as EagleCam, was designed to be ejected from the lander during the descent and capture a “selfie” view of the touchdown.

Because of the anomalies surrounding Odysseus’s descent, EagleCam couldn’t be ejected for the landing. Altemus said the mission team finally reactivated and deployed EagleCam today. “It ejected about 4 meters away from the vehicle safely,” he said. “However, either in the camera or in the wi-fi signal back to the lander, something might not be working correctly.”

Altemus said the Embry-Riddle team “is working on that and wrestling with that to see if there’s anything they can do.”

Crain said it’s by no means clear whether Odysseus can be revived after the 14-day-long lunar night in the south polar region, during which temperatures could get colder than 200 degrees below zero Fahrenheit (-130 degrees Celsius). “The No. 1 limiter we face is the batteries,” he said. “Batteries are a chemical asset, and that chemistry does not respond well to deep cold. … The batteries absolutely are not tested to that level of cold. Neither is our flight computer or our radars.”

If the mission team can revive Odysseus, it would be a feat comparable to the Japanese Aerospace Exploration Agency’s revival of its SLIM moon lander last weekend.

Despite the glitches, Altemus said Odysseus, which is named after a hero in Greek mythology, should be seen as a trailblazer for the commercialization of moon exploration.

“I think it’s the tip of the iceberg. And it’s beginning, for people to realize, ‘Wow, this was an incredible success. What are the possibilities?'” he said. “I think that was the whole purpose here, to open up space exploration … so more and more people can participate. And if that’s the result we get, I’m happy for that.”

The post Odysseus Is Going to Sleep After Sending Snapshots From Moon Landing appeared first on Universe Today.



Dwarf Galaxies Banished the Darkness and Lit Up the Early Universe

During the Universe’s Dark Ages, dense primordial gas absorbed and scattered light, prohibiting it from travelling. Only when the first stars and galaxies began to shine in energetic UV light did the Epoch of Reionization begin. The powerful UV light shone through the Universe and punched holes in the gas, allowing light to travel freely.

New observations with the James Webb Space Telescope reveal how it happened. The telescope shows that faint dwarf galaxies brought an end to the darkness.

To reach back in time and answer fundamental questions about our Universe is the James Webb Space Telescope’s greatest gift. The powerful infrared space telescope has peered back into the earliest stages of the Universe’s life and shown astronomers the forces that shaped it. One of our biggest questions about the Universe concerns the Epoch of Reionization (EOR) that occurred several hundred million years after the Big Bang, ending the Universe’s Dark Ages.

An illustration showing the timeline of the Universe. The EOR ended the Cosmic Dark Ages and began about 400 million years after the Big Bang. Credit: NASA, ESA, and A. Feild (STScI)
An illustration showing the timeline of the Universe. The EOR ended the Cosmic Dark Ages and began about 400 million years after the Big Bang. Credit: NASA, ESA, and A. Feild (STScI)

Scientists have been uncertain about the source of light that caused the EOR. The primordial gas that blocked light from travelling prior to the EOR was hydrogen, and it comprised the Intergalactic Medium (IGM). Only higher-energy UV light can ionize hydrogen, so astronomers looked for sources of UV light. (Gamma rays and X-rays can too, but there weren’t enough sources to cause the EOR.) Candidates included Population III stars, the very first stars to form in the Universe. They were massive and luminous and could’ve provided the required UV light.

Quasars were another candidate because they emit so much light above the threshold needed to ionize hydrogen. But there weren’t enough of them to trigger the EOR. Massive galaxies were also a candidate, but astronomers think that they would’ve absorbed much of their own light.

Dwarf galaxies were also a candidate. In fact, they’ve been the prime candidate for a while because they’re small enough for their UV light to easily escape. They need to be what are called Lyman Continuum (LyC)-emitting galaxies. Lyman Continuum Photons have enough energy to ionize hydrogen, so astronomers searched for the LyC dwarf galaxies that emitted them. The Hubble found about 50 of them in 2022, and that helped build the framework for understanding how dwarf galaxies could be responsible for the EOR. But the 50 that Hubble found were local, not ancient.

But now we have the keen-eyed JWST and its piercing infrared gaze. It has the power to see the faintest infrared light from the ancient Universe. Even the powerful JWST needs help to see the very faint dwarf galaxies in the early Universe. Combined with the power of gravitational lensing, the space telescope was able to see some of the earliest galaxies. Among them were LyC dwarf galaxies, some of the faintest objects in the early Universe.

“This discovery unveils the crucial role played by ultra-faint galaxies in the early Universe’s evolution.”

Iryna Chemerynska, Institut d’Astrophysique de Paris in France.

These findings are in a new research article published in Nature titled “Most of the photons that reionized the Universe came from dwarf galaxies.” The lead author is Hakim Atek, an astronomer at the Institut d’Astrophysique de Paris, CNRS, Sorbonne Université, Paris.

Atek and his fellow researchers found eight ultra-faint dwarf galaxies in the early Universe. Contrary to previous thinking, these eight galaxies were prodigious emitters of ionizing Lyman Continuum radiation. Despite their apparent faintness, they emitted four times more ionizing radiation than previously thought. This helps cement their status as the objects responsible for the EOR.

The Ultra Compact Dwarf Galaxy M60-UCD1 is not ancient and is only about 50 million light years away. But it's similar to the ancient dwarf galaxies found by the JWST. It's only about 1/500th the diameter of the Milky Way, yet is densely packed with stars and extremely luminous. (Image Credit NASA/ESA and A.Seth)
The Ultra Compact Dwarf Galaxy M60-UCD1 is not ancient and is only about 50 million light years away. But it’s similar to the ancient dwarf galaxies found by the JWST. It’s only about 1/500th the diameter of the Milky Way, yet is densely packed with stars and extremely luminous. (Image Credit NASA/ESA and A.Seth)

“This discovery unveils the crucial role played by ultra-faint galaxies in the early Universe’s evolution,” said team member Iryna Chemerynska of the Institut d’Astrophysique de Paris in France. “They produce ionizing photons that transform neutral hydrogen into ionized plasma during cosmic reionization. It highlights the importance of understanding low-mass galaxies in shaping the Universe’s history.”

These dwarf galaxies were about 100 times less massive than the Milky Way. By using the JWST’s powerful spectroscopy, astronomers were able to examine the light from these small, faint galaxies in great detail. The team of researchers realized that if there were enough of these galaxies, they could be responsible for the EOR.

As each galaxy emitted ionizing radiation, it created a bubble of transparent hydrogen around them. These bubbles grew until they overlapped. Eventually, the hydrogen in the IGM was ionized, and light could travel freely. While other sources, like quasars and massive galaxies, could’ve created their own smaller bubbles of ionized hydrogen, it was the smaller bubbles that allowed the Universe to ionize more homogeneously. So, these dwarf galaxies made a large contribution to the architecture of the Universe.

“These cosmic powerhouses collectively emit more than enough energy to get the job done,” said lead author Hakim Atek. “Despite their tiny size, these low-mass galaxies are prolific producers of energetic radiation, and their abundance during this period is so substantial that their collective influence can transform the entire state of the Universe.”

In the current age, we’re only able to see other galaxies because of the reionization. Without it, we’d be surrounded by opaque atomic hydrogen. So, discovering what made the galaxy transparent helps explain the Universe we find ourselves in today.

Scientists aren’t done with this type of observation yet. While these researchers found eight dwarf galaxies that can help explain the EOR, a more comprehensive picture of their population is needed to firmly establish them as the primary cause of the EOR. An upcoming JWST observing program called GLIMPSE will study dwarf galaxies in the early Universe using the JWST and gravitational lensing. Astronomers want to know how prevalent these early dwarf galaxies are so that they can further constrain their contribution to the EOR.

The post Dwarf Galaxies Banished the Darkness and Lit Up the Early Universe appeared first on Universe Today.



Watch the Varda Capsule’s Entire Fiery Atmospheric Re-Entry

Here’s a front row seat on what it would be like to return to Earth inside a space capsule. Varda Space Industries’ small W-1 spacecraft successfully landed at the Utah Test and Training Range on February 21, 2024.  A camera installed inside the cozy 90 cm- (3 ft)-wide capsule captured the entire stunning reentry sequence, from separation from the satellite bus in low Earth orbit (LEO) to the fiery re-entry through Earth’s atmosphere, to parachute deploy, to the bouncy landing.

At the end of this 5-minute video, you’ll see a pair legs with mud-caked shoes approach to gather the parachute and retrieve the capsule. Not only is there video, but sound as well. And the sounds of reentry and landing are what grabs you!  

There’s a also full 27-minute unedited raw footage from separation to touchdown is also available, below.

On X, Varda said reentry speeds reached Mach 25.

W-1 was part of a Rocket Lab Photon spacecraft launched in June 2023 on SpaceX’s Transporter-8 rideshare mission (NASA’s CAPSTONE mission also launched on this flight.). Varda used the spacecraft to test their in-space manufacturing technologies. Inside the capsule, the company was able to produce crystals of a drug called ritonavir, an antiviral drug grown in the microgravity LEO environment that can be used to treat HIV and hepatitis C.  The company’s goal is to develop the infrastructure to make LEO more accessible to commercial industries.  

“We manufacture pharmaceuticals in space,” said Varda CEO Will Bruey in an interview on Marketplace. “Removing gravity allows us to make medicines you otherwise couldn’t on Earth. Gravity is kind of like a parameter. If you put a temperature knob on an oven, you create a whole world of new recipes and new food you can create. Similarly, if you can change gravity, you can also change the chemical process for drug formulations.”

W-1 spent eight months integrated with a Rocket Lab Photon spacecraft (the upper stage of the Electron rocket) that provided the capsule with power, propulsion, and navigation.

Varda Space’s off-Earth manufacturing capsule is evaluated by recovery personnel as it sits on the desert floor of the Utah Test and Training Range (UTTR) on Feb. 21, 2024. Credit: Varda Space/John Kraus

“This mission was a phenomenal feat and impressive display of teamwork between the Rocket Lab and Varda teams to develop a unique and highly capable spacecraft, successfully demonstrate in-space manufacturing and bring back the capsule and finished pharmaceutical product – all on the first attempt,” said Rocketlab CEO Peter Beck in a company press release. “The success of this reentry mission will also inform our work on developing a reentry capsule for Neutron to potentially enable human spaceflight missions.”

Varda transported the capsule to its California headquarters for a complete check-out, and sent the ritonavir samples on board to a pharmaceutical company, Improved Pharma, for analysis. Varda said it will also share data from the reentry itself with NASA and the Air Force under a contract with those agencies.

Varda Capsule Reentry – Full Video from LEO to Earth

The post Watch the Varda Capsule’s Entire Fiery Atmospheric Re-Entry appeared first on Universe Today.



Tuesday, February 27, 2024

Mars Had its Own Version of Plate Tectonics

Plate tectonics is not something most people would associate with Mars. In fact, the planet’s dead core is one of the primary reasons for its famous lack of a magnetic field. And since active planetary cores are one of the primary driving factors of plate tectonics, it seems obvious why that general conception holds. However, Mars has some features that we think of as corresponding with plate tectonics – volcanoes. A new paper from researchers at the University of Hong Kong (HKU) looks at how different types of plate tectonics could have formed different types of volcanoes on the surface of Mars.

Typically, when you think of volcanoes on Mars, you think of massive shield volcanoes like Olympus Mons, similar to those seen in some locations on Earth, such as Hawai’i. These form when repeated eruptions deposit layers of lava for millions of years. Those eruptions aren’t impacted by how any underlying plates move underneath them. But they do create a different underlying landscape than elsewhere on the planet.

One of the main differences is that the volcanoes have a high silica concentration. Most of the rest of the Red Planet has relatively low silica concentration and consists primarily of basalt. However, they have distinctly more elevated levels of silica, and Dr. Joseph Michalski and his colleagues at HKU think they know why.

PBS has a geological history of Mars.
Credit – PBS Eons YouTube Channel

Back in the Archean age, 3 billion years ago, on Earth, geologists have theorized that a type of plate tectonics known as “vertical tectonics” forced the planet’s crust to collapse into the planet’s mantle. There, it was reformed, injected with a high concentration of silica, and then spewed back onto the surface due to erupting volcanoes.

That would conveniently explain why the silica levels of volcanoes on Mars are higher than on the rest of the planet. To back up their findings, the paper describes signs of numerous other volcano types, such as stratovolcanoes and lava domes, that also contain high silica concentrations and could result from this type of theorized tectonics.

On Earth, other active geological processes have worn down the rock that could have been formed by these processes billions of years ago. But there isn’t nearly as much geological activity on Mars, so it provides a clearer picture of the resulting geology from these processes. 

SciShow Space Discusses the possibility that Mars still has active volcanoes.
Credit – SciShow Space YouTube Channel

This body of work contributes to our overall understanding of the geology of Mars, and the discovery of so many additional volcanoes is sure to interest areologists for years to come. But for now, this new theory of Mars’ geological history is another step in our understanding of the Red Planet.

Learn More:
UHK – Diverse Ancient Volcanoes on Mars Discovered by HKU Planetary Scientist May Hold Clues to Pre-plate Tectonic Activity on Earth
Michalski et al. – Diverse volcanism and crustal recycling on early Mars
UT – Mars is Surprisingly Volcanically Active
UT – Scientists Find Clues of Plate Tectonics on Mars

Lead Image:
Volcanoes on Mars

The post Mars Had its Own Version of Plate Tectonics appeared first on Universe Today.



New Moons Found at Uranus and Neptune

Astronomers have found three new moons orbiting our Solar System’s ice giants. One is orbiting Uranus, and two are orbiting Neptune. It took hard work to find them, including dozens of time exposures by some of our most powerful telescopes over several years. All three are captured objects, and there are likely more moons around both planets waiting to be discovered.

This is the first new moon found around Uranus in 20 years and brings the planet’s total to 28. One of the new moons around Neptune is the smallest ever detected with a ground-based telescope, and the pair of new discoveries bring Neptune’s total to 16.

Uranus’ new moon has the provisional title S/2023 U1 and was first observed on November 4, 2023, by Scott Sheppard from Carnegie Science. Like the planet’s other outer satellites, it will eventually be given a name from a Shakespeare play. Other moon names include Oberon, Titania, and Ariel. S/2023 U1 is only 8 km in diameter, tiny compared to the ice giant’s largest moon, Titania, which is almost 800 km. The tiny moon takes 680 days to orbit Uranus.

It's time to add one more moon to Uranus' tally. Tiny S/2023 U1 is the ice giant's 28th moon. Image Credit: Canadian Space Agency.
It’s time to add one more moon to Uranus’ tally. Tiny S/2023 U1 is the ice giant’s 28th moon. Image Credit: Canadian Space Agency.

Neptune’s pair of new moons are likewise tiny. The brightest one has the provisional name S/2002 N5, is about 23 km in diameter, and takes nearly nine years to orbit Neptune. The fainter one has the provisional name S/2021 N1, is about 14 km in diameter, and takes almost 27 years to orbit the planet. They’ll both be given names from Greek mythology.

The newly discovered pair of tiny moons means Neptune now has 16 moons. All of the new moons are likely fragments from collisions that broke much larger moons apart early in the Solar System's history. Image Credit: Canadian Space Agency.
The newly discovered pair of tiny moons means Neptune now has 16 moons. All of the new moons are likely fragments from collisions that broke much larger moons apart early in the Solar System’s history. Image Credit: Canadian Space Agency.

All of the easy-to-observe moons were found long ago. These small moons required much more work. While Scott Sheppard played a leading role, he had a lot of help.

“The three newly discovered moons are the faintest ever found around these two ice giant planets using ground-based telescopes,” explained Sheppard. “It took special image processing to reveal such faint objects.”

Sheppard used the Magellan telescopes at Carnegie Science’s Las Campanas Observatory in Chile to first spot Uranus’ new moon in November 2023. One month later, he performed follow-up observations with Magellan. Sheppard worked with those observations and alongside Marina Brozovic and Bob Jacobson of NASA’s Jet Propulsion Laboratory to determine the moon’s orbit. He also found the moon in older images from 2021 from the Subaru Telescope and the Magellan telescopes.

Sheppard also found the brighter of Neptune’s new moons with the Magellan telescope. He collaborated with David Tholen of the University of Hawaii, Chad Trujillo of Northern Arizona University, and Patryk Sofia Lykawa of Kindai University to find Neptune’s other new moon. It was extremely faint but still detectable with the Subaru Telescope. Both of Neptune’s new moons were first observed in September 2021. In October 2021, October 2022 and in November 2023, follow-up observations with the Magellan telescopes confirmed the brighter Neptune moon.

The VLT is a grouping of eight separate telescopes and is one of our most powerful observatories. It includes four 8-meter telescopes that made a critical contribution to the discovery of the new moons. Image Credit: ESO
The VLT is a grouping of eight separate telescopes and is one of our most powerful observatories. It includes four 8-meter telescopes that made a critical contribution to the discovery of the new moons. Image Credit: ESO

Confirming the fainter moon with follow-up observations was more challenging. To do that, the big guns in the telescope world were brought to bear. The ESO’s Very Large Telescope and the Gemini Observatory’s 8-meter telescope were used under pristine observing conditions to confirm the tiny, faint moon. Even then, the astronomers used the 2021 observations to know where to point the powerful telescopes and locate the moon.

Neptune’s brighter new moon was first spotted a couple of decades ago but was never recognized as a moon.

“Once S/2002 N5’s orbit around Neptune was determined using the 2021, 2022, and 2023 observations, it was traced back to an object that was spotted near Neptune in 2003 but lost before it could be confirmed as orbiting the planet,” Sheppard explained. 

It took dozens of five-minute exposures over three- or four-hour periods on several nights to gather enough data to see the moons. In these long exposures, the position of the planet and the moons shifts. The exposures were combined to create one deep image. This was a demanding use of time on the pair of large telescopes. But the result was the deepest images yet of the Uranus and Neptune systems.

The Gemini Observatory in Maunakea, Hawaii, features a pair of 8.1-meter telescopes. This image shows the Gemini North Telescope. Image Credit: Gemini Observatory/AURA
The Gemini Observatory in Maunakea, Hawaii, features a pair of 8.1-meter telescopes. This image shows the Gemini North Telescope. Image Credit: Gemini Observatory/AURA

“Because the moons move in just a few minutes relative to the background stars and galaxies, single long exposures are not ideal for capturing deep images of moving objects,” Sheppard said. “By layering these multiple exposures together, stars and galaxies appear with trails behind them, and objects in motion similar to the host planet will be seen as point sources, bringing the moons out from behind the background noise in the images.”

The three new moons are most likely captured objects. Their orbits are eccentric and inclined, and they’re quite distant from their planets. But regardless of their moons’ origins, all four giant planets in the Solar System have similar lunar arrangements and configurations.

“Even Uranus, which is tipped on its side, has a similar moon population to the other giant planets orbiting our Sun,” Sheppard explained. “And Neptune, which likely captured the distant Kuiper Belt object Triton—an ice-rich body larger than Pluto—an event that could have disrupted its moon system, has outer moons that appear similar to its neighbours.”

What can these moons tell us about the Solar System’s history? They’re more evidence of the Solar System’s chaotic, formative days.

The new moons, along with others orbiting the giant planets, are likely fragments of larger parent moons destroyed by collisions in the Solar System's early, chaotic days. Credit: NASA/JPL-Caltech
The new moons, along with others orbiting the giant planets, are likely fragments of larger parent moons destroyed by collisions in the Solar System’s early, chaotic days. Credit: NASA/JPL-Caltech

Specifically, these moons show us that the groupings of moons around the ice giants are similar to the groupings around the other giants, Jupiter and Saturn. The gas giants have dynamic orbital groupings of outer moons, and now we know that Uranus and Neptune do, too.

The grouping of the moons is evidence of much larger parent moons smashed into pieces by collisions with other objects, probably comets or asteroids. The collisions left the broken fragments in similar orbits as the parent moons. There are almost certainly other smaller fragment moons from these collisions, but our current technology can’t find them.

If there are other moons around the ice giants, they’re likely smaller than 8 km in diameter around Uranus and smaller than 14 km around Neptune.

The post New Moons Found at Uranus and Neptune appeared first on Universe Today.



Some Intelligent Civilizations Will Be Trapped on their Worlds

Evolution has produced a wondrously diverse variety of lifeforms here on Earth. It just so happens that talking primates with opposable thumbs rose to the top and are building a spacefaring civilization. And we’re land-dwellers. But what about other planets? If the dominant species on an ocean world builds a technological civilization of some sort, would they be able to escape their ocean home and explore space?

A new article in the Journal of the British Interplanetary Society examines the idea of civilizations on other worlds and the factors that govern their ability to explore their solar systems. Its title is “Introducing the Exoplanet Escape Factor and the Fishbowl Worlds (Two conceptual tools for the search of extra-terrestrial civilizations).” The sole author is Elio Quiroga, a professor at the Universidad del Atlántico Medio in Spain.

We have no way of knowing if other Extraterrestrial Intelligences (ETIs) exist or not. There’s at least some possibility that other civilizations exist, and we’re certainly in no position to say for sure that they don’t. The Drake Equation is one of the tools we use to talk about the existence of ETIs. It’s a kind of structured thought experiment in the form of an equation that allows us to estimate the existence of other active, communicative ETIs. Some of the variables in the Drake Equation (DE) are the star formation rate, the number of planets around those stars, and the fraction of planets that could form life and on which life could evolve to become an ETI.

In his new research article, Quiroga comes up with two new concepts that feed into the DE: the Exoplanet Escape Factor and Fishbowl worlds.

Planets of different masses have different escape velocities. Earth’s escape velocity is 11.2 km/s (kilometres per second), which is more than 40,000 km/h. The escape velocity is for ballistic objects without propulsion, so our rockets don’t actually travel 40,000 km/h. But the escape velocity is useful for comparing different planets because it’s independent of the vehicle used and its propulsion.

“It could therefore be the case that an intelligent species on these planets would never be able to travel into space due to sheer physical impossibility.”

Elio Quiroga, Universidad del Atlántico Medio

Super-Earths have much greater masses and much higher escape velocities. While there’s no exact definition of a Super-Earth’s mass, many sources use the upper bound of 10 Earth masses to define them. So, an ETI on a Super-Earth would be facing a different set of conditions than we do here on Earth when it comes to space travel.

This simple graph from the research article shows the relationship between planetary mass and escape velocity. The x-axis shows Earth masses, and the y-axis shows the required escape velocity. Image Credit: Quiroga, 2024.
This simple graph from the research article shows how escape velocity rises with planetary mass. The x-axis shows Earth masses, and the y-axis shows the required escape velocity. Image Credit: Quiroga, 2024.

In this work, Quiroga implements the Exoplanet Escape Factor (Fex) and the Exoplanet Escape Velocity (Vex.) By working with them, he arrives at a sample of escape velocities for some known exoplanets. Note that the composition of the planets isn’t critical, only their masses.

This figure from the research shows how easy or difficult it would be to reach space from some known exoplanets. Green indicates that escape is possible, orange indicates likely problems, and red indicates the practical impossibility of space travel. Image Credit: Quiroga 2024.
This figure from the research shows how easy or difficult it would be to reach space from some known exoplanets. Green indicates that escape is possible, orange indicates likely problems, and red indicates the practical impossibility of space travel. Image Credit: Quiroga 2024.

Quiroga points out that a planet with a Fex value of <0.4 would struggle to hold onto any atmosphere anyway, making life unlikely. Conversely, a Fex value of >2.2 would make space travel unlikely. “Values of Fex > 2.2 would make space travel unlikely for the exoplanet’s inhabitants: they would not be able to leave the planet using any conceivable amount of fuel, nor would a viable rocket structure withstand the pressures involved in the process, at least with the materials we know (as far as we know, the same periodic table of elements and the same combinations of them govern the entire universe).”

“It could, therefore, be the case that an intelligent species on these planets would never be able to travel into space due to sheer physical impossibility,” Quiroga writes. In fact, they may never conceive of the idea of any type of space travel at all. Who knows?

Of course, space exploration isn’t a one-way street. Astronauts have to return from space, and a planet’s mass affects that. Re-entry imposes its own difficulties on a Super-Earth ten times more massive than our planet. The atmospheric density also plays a role. A spacecraft needs to control its velocity and frictional heating when re-entering, and that’s more difficult on a more massive planet, just as escaping is.

Quiroga also talks about the idea of the Fishbowl Worlds. These are the planets above Fex 2.2 from which escape is physically impossible. What could life for an intelligent species be like on a Fishbowl world?

Artist's impression of the surface of a "Hycean" world. According to Quiroga, if a civilization arose on an ocean world, it could end up being a Fishbowl World where the inhabitants have no chance of ever exploring space. Image Credit: University of Cambridge
Artist’s impression of the surface of a “Hycean” world. According to Quiroga, if a civilization arose on an ocean world, it could end up being a Fishbowl World where the inhabitants have no chance of ever exploring space. Image Credit: University of Cambridge

In his research article, Quiroga invites us to be speculative with a nod to science fiction. Imagine an ocean world that’s home to an intelligent species. In a fluid environment, unaided communication travels much further than in an atmosphere like Earth’s. Unaided signals could travel for hundreds of kilometres. In an environment like that, “… communication between individuals could be feasible without the need for communication devices,” Quiroga explains. So, the impetus to develop communication technologies might not be there. In that case, Quiroga says, the technology may not have developed and the civilization might not be considered “communicative” at all, one of the keys to the definition of an ETI.

“Telecommunications technology might never emerge on such a world, even though it could be home to a fully developed civilization,” Quiroga writes. “Such a civilization would not be “communicative” and would not be contemplated in the Drake equation.”

Other circumstances could effectively trap civilizations on their homeworlds. On a planet with continuous, unbroken cloud cover, the starry sky would never be visible. How would that affect a civilization? Can you wonder about the stars if you can’t see them and don’t know they’re there? Of course not. A similar thing is true in a binary star system with no nighttime. Stars would never be visible and would never be objects and sources of wonder.

Ocean worlds present a similar conundrum. On ocean worlds or moons with warm oceans and frozen ice shells kilometres thick, any inhabitants would have extremely limited views of the Universe they inhabit. It’s difficult to imagine a technological civilization arising in an ocean under several kilometres of ice. But we’re in no position to judge whether that’s possible or not.

Jupiter's moon, Europa, has a warm ocean under a thick icy shell. Are there other worlds out there like Europa? What would it be like for intelligent creatures that lived in a world like this? They would never see the stars in the sky, their own stars, or any other planets in their solar systems. (Credit: NASA/JPL/Galileo spacecraft)
Jupiter’s moon, Europa, has a warm ocean under a thick icy shell. Are there other worlds out there like Europa? What would it be like for intelligent creatures that lived in a world like this? They would never see the stars in the sky, their own stars, or any other planets in their solar systems. (Credit: NASA/JPL/Galileo spacecraft)

Quiroga’s Exoplanet Escape Factor (Fex) can help us imagine what kinds of worlds could host ETIs. It can help us anticipate the factors that prevent or at least inhibit space travel, and it brings more complexity into the Drake Equation. It leads us to the idea of Fishbowl Worlds, inescapable planets that could keep a civilization planet-bound forever.

Without the ability to ever escape their planet and explore their solar systems, and without the ability to communicate beyond their worlds, could entire civilizations rise and fall without ever knowing the Universe they were a part of? Could it happen right under our noses, so to speak, and we’d never know?

The post Some Intelligent Civilizations Will Be Trapped on their Worlds appeared first on Universe Today.



Monday, February 26, 2024

China Names its Capsule and Lander for its Upcoming Human Lunar Missions

In a recent announcement, the Chinese Space Agency (CSA) unveiled the names for its forthcoming lunar mission components. The CSA have been working towards sending humans to the Moon through a series of robotic missions. The 22-tonne capsule that is taking the astronauts to the Moon is called Mengzhuo (translates to ‘dream vessel’) and the lander has been named Lanyue (meaning ‘embracing the Moon’). Assuming all goes to plan, they will send two humans and a rover to the surface of the Moon by 2030.

Despite the fact that the CSA have not published a date for the mission yet, if all goes well then they will become the second country to get humans to the lunar surface. The capsules will launch to the Moon atop their new super-heavy-lift carrier rocket named Long March 10.

According to Chinese state media, the Mengzhou spacecraft will include the re-entry module designed to house the astronauts and will also function as a control centre. In addition to this, there will be the service module that is home to power and propulsion systems.  Overall, Mengzhou will be 9 metres long and weigh in at 22 tons. 

In an attempt to get the public involved in the mission, the names of the craft were picked by a group of experts from nearly 2,000 ideas put forward by the public. The names have history too. ‘Lanyue’ first appeared in a poem written by Mao Zedong (the founder of People’s Republic of China) in 1965. It symbolises the Chinese aspirations and confidences in their exploration of the Universe. The name ‘Mengzhou’ is linked to the Chinese nations dream of landing on the Moon. 

That same dream is shared by President Xi Jinping with the goal of revitalising the nation and establishing itself as a prominent technological country. The aspirations for lunar exploration are on par with many other countries that wish to enhance their space capability.  Doing so may yield scientific discoveries, national prestige and opportunities for identifying resource supplies to facilitate deeper space exploration. 

This all comes when the United States are also gearing up with their Lunar hopes, in particular trying to get humans to the Moon in 2026 as part of the Artemis program. If successful then it will mean NASA will have got back to the Moon over 50 years after their first visit.

The Chinese mission comes after a successful series of unmanned lunar probes, the Chang’e missions which, in 2019 became the first to achieve a landing on the far side of the Moon. The series hasn’t stopped there though. Chang’e 6 is scheduled to launch later this year and aims to retrieve the first ever samples from the far side of the Moon.

Source : China Names Its Manned Lunar Exploration Vehicles Mengzhou, Lanyue

The post China Names its Capsule and Lander for its Upcoming Human Lunar Missions appeared first on Universe Today.