Wednesday, November 20, 2024

What a Misplaced Meteorite Told Us About Mars

11 million years ago, Mars was a frigid, dry, dead world, just like it is now. Something slammed into the unfortunate planet, sending debris into space. A piece of that debris made it to Earth, found its way into a drawer at Purdue University, and then was subsequently forgotten about.

Until 1931, when scientists studied and realized it came directly from Mars. What has it told them about the red planet?

11 million years ago, the Himalayas were rising on a warmer, more humid Earth. Early ape species made their home in an Africa covered by tropical forests. Diverse mammal species roamed the continents.

At the same time, on Mars, the frigid wind blew across a desiccated, forlorn world. The planet’s thin atmosphere is a weak barrier to meteorites, and the planet’s cratered surface bears witness to its nakedness. Some impacts were powerful enough to launch debris into space beyond the planet’s gravitational pull. The meteorite in the drawer is one such piece of debris.

“Many meteoroids are produced by impacts on Mars and other planetary bodies, but only a handful will eventually fall to Earth.”

Marissa Tremblay, Purdue University

The meteorite was long forgotten in its storage place until 1931. Scientists identified it as a piece of Mars, and now new research is uncovering clues about Mars’ past hidden in the 800-gram piece of rock.

This image shows a page from an article published in Popular Astronomy in 1935. Image Credit: Popular Astronomy.
This image shows a page from an article published in Popular Astronomy in 1935. Image Credit: Popular Astronomy.

11 million years ago is not a long time in geological and planetary terms, and the number fits neatly into most people’s imaginations. But rock has deep temporal roots, and the meteorite that reached Earth is an igneous rock that dates back 1.4 billion years. That much time is more difficult to understand, but science is at its best when it opens human minds to a more fulsome understanding of nature.

The meteorite, named “Lafayette” after the city in Indiana that’s home to Purdue University, is the subject of new research published in Geochemical Perspectives Letters. It’s titled “Dating recent aqueous activity on Mars,” and the lead author is Marissa Tremblay. Tremblay is an assistant professor with the Department of Earth, Atmospheric, and Planetary Sciences (EAPS) at Purdue University.

There’s ample evidence that some minerals on Mars formed in the presence of water. Though Lafayette itself is an igneous rock 1.4 billion years old, some of the minerals it contains are younger.

“Dating these minerals can therefore tell us when there was liquid water at or near the surface of Mars in the planet’s geologic past,” Tremblay said. “We dated these minerals in the Martian meteorite Lafayette and found that they formed 742 million years ago. We do not think there was abundant liquid water on the surface of Mars at this time. Instead, we think the water came from the melting of nearby subsurface ice called permafrost, and that the permafrost melting was caused by magmatic activity that still occurs periodically on Mars to the present day.”

Lafayette is one of the Nakhlite meteorites, an igneous rock that formed from basaltic lava around 1.4 billion years ago. Scientists think these rocks formed in one of Mars’ large volcanic regions: Elysium, Syrtis Major Planum, or the largest one, Tharsis, which is home to the three shield volcanoes, Tharsis Montes.

A colourized image of the surface of Mars taken by the Mars Reconnaissance Orbiter. The line of three volcanoes is the Tharsis Montes, with Olympus Mons to the northwest. Valles Marineris is to the east. The researchers think that the Lafayette meteorite came from the Tharsis volcanic region, or one of Mars' other, smaller volcanic regions. Image: NASA/JPL-Caltech/ Arizona State University
A colourized image of the surface of Mars taken by the Mars Reconnaissance Orbiter. The line of three volcanoes is the Tharsis Montes, with Olympus Mons to the northwest. Valles Marineris is to the east. The researchers think that the Lafayette meteorite came from the Tharsis volcanic region, or one of Mars’ other, smaller volcanic regions. Image: NASA/JPL-Caltech/ Arizona State University

Ancient rocks and their embedded minerals contain information about Mars’ ancient past. The history of Mars’ hydrological cycle is a key objective in our ongoing study of Mars. This research is focused on a particular mineral in Lafayette called iddingsite. It forms when basalt is weathered in the presence of water.

The difficulty with meteorites and the clues they contain about ancient Mars is that they’ve been exposed to and potentially altered by the heat of the initial impact and the heat of entry into Earth’s atmosphere. The chemical signals inherent in rock can become muddied. But Lafayette is different. It’s clear that it was blasted off of Mars 11 million years ago.

“We know this because once it was ejected from Mars, the meteorite experienced bombardment by cosmic ray particles in outer space that caused certain isotopes to be produced in Lafayette,” Tremblay says. “Many meteoroids are produced by impacts on Mars and other planetary bodies, but only a handful will eventually fall to Earth.”

“The age could have been affected by the impact that ejected the Lafayette Meteorite from Mars, the heating Lafayette experienced during the 11 million years it was floating out in space, or the heating Lafayette experienced when it fell to Earth and burned up a little bit in Earth’s atmosphere,” Tremblay said. “But we were able to demonstrate that none of these things affected the age of aqueous alteration in Lafayette.”

Study co-author Ryan Ickert is a senior research scientist in Purdue’s EAPS. Ickert uses heavy radioactive and stable isotopes to study geological processes over time. He showed how isotope data used to date water-rock interactions on Mars were problematic and that the data had likely been polluted by other processes. According to Ickert, he and his colleagues got it right this time.

“This meteorite uniquely has evidence that it has reacted with water. The exact date of this was controversial, and our publication dates when water was present,” he says.

This figure from the research shows a cross-section of the Lafayette meteorite. Ol is an olivine grain surrounded by augite crystals (Px). Iddingsite (Id) is present in veins that travel through the rock. Though Lafayette formed over 1.3 billion years ago, the Iddingsite veins formed later, about 742 million years ago, when water seeped through the cracks. Image Credit: Tremblay et al. 2024.
This figure from the research shows a cross-section of the Lafayette meteorite. Ol is an olivine grain surrounded by augite crystals (Px). Iddingsite (Id) is present in veins that travel through the rock. Though Lafayette formed over 1.3 billion years ago, the Iddingsite veins formed later, about 742 million years ago, when water seeped through the cracks. Image Credit: Tremblay et al. 2024.

The researchers used a novel technique involving the isotopes Argon 40 and Argon 39 to date Lafayette’s exposure to water and its formation of Iddingsite. That showed them that the exposure occurred 742 million years ago. Their explanation is that magmatic activity melted subsurface ice, and the water subsequently found its way into cracks in the igneous rock, altering some of the olivine into Iddingsite.

All this from a meteorite that was lost in a drawer.

The Solar System is a puzzle. It’s an artifact of Nature’s ordered complexity, but at the same time, it’s shaped by Nature’s steadfast chaos. Each molecule, each tiny piece of rock, including the Lafayette meteorite, is a part of it. Each piece holds a clue to the puzzle.

“We can identify meteorites by studying what minerals are present in them and the relationships between these minerals inside the meteorite,” said Tremblay. “Meteorites are often denser than Earth rocks, contain metal, and are magnetic. We can also look for things like a fusion crust that forms during entry into Earth’s atmosphere. Finally, we can use the chemistry of meteorites (specifically their oxygen isotope composition) to fingerprint which planetary body they came from or which type of meteorite it belongs to.”

Dating these rocks, these pieces of the puzzle, is difficult. However, this research has made progress by developing a novel way to date minerals in the Lafayette meteorite.

“We have demonstrated a robust way to date alteration minerals in meteorites that can be applied to other meteorites and planetary bodies to understand when liquid water might have been present,” Tremblay concluded.

The post What a Misplaced Meteorite Told Us About Mars appeared first on Universe Today.



SpIRIT CubeSat Demonstrates a Operational Gamma and X-Ray Detector

CubeSats are becoming more and more capable, and it seems like every month, another CubeSat is launched doing something new and novel. So far, technology demonstration has been one of the primary goals of those missions, though the industry is moving into playing an active role in scientific discovery. However, there are still some hurdles to jump before CubeSats have as many scientific tools at their disposal as larger satellites. That is where the Space Industry Responsive Intelligent Thermal (SpIRIT) CubeSat, the first from the Univeristy of Melbourne’s Space Lab, hopes to make an impact. Late in 2023, it launched with a few novel systems to operate new scientific equipment, and its leaders published a paper a few months ago detailing the progress of its mission so far.

SpIRIT represents a first not only for the Melbourne Space Lab but also for Australia as a whole. Their space agency was first set up in 2018 and began funding the SpIRIT project in 2020, as the COVID pandemic started making joint development efforts difficult. To contribute to the nation’s overall learning of how to build and control CubeSat, as much equipment as possible was sourced directly from Australian companies, including an ion drive from Neumann Space and a solar panel platform from Inovor Technologies.

However, the most exciting part of the SpIRIT mission was the instruments explicitly designed for it. There were several interesting ones, including HERMES, an X-ray and gamma-ray detector; TheMIS, a thermal management system used to cool HERMES; LORIS, an edge computing system; and Mercury, for use in low-latency communications.

This video describes the importance of SpIRIT to the Australian space program.
Credit – Australian Space Agency YouTube Channel

Each system is designed to address a specific development problem plaguing CubeSats more generally. They aren’t typically able to capture light in specific wavelengths, such as gamma waves, because the sensors for those wavelengths, which include infrared, require active cooling systems that are too bulky to fit into a CubeSat’s space constraints.

Additionally, the sheer amount of data collected by modern sensors would be overwhelming for the communication links available to standard CubeSats. A single sensor could produce as much as 100Gb of data per day, while a standard downlink channel would allow only 1Gb of data to be sent back to Earth. Combining “edge computing,” where preliminary data processing is done on the CubeSat, with a low-latency communication line is SpIRIT’s solution to that problem. However, TheMIS would also have to deal with the additional heat generated by inefficiencies in the processing unit.

Preliminary results of the project look good, with HERMES beginning complete observations in March and TheMIS successfully managing thermal loads automatically. LORIS has successfully captured some camera images and started performing image recognition algorithms. Mercury has been more of a struggle, with intermittent communication happening throughout the satellite’s lifetime. Since the whole project has primarily been considered a technology demonstration mission, those growing pains are understandable and don’t seem to affect the overall mission operation.

Members of the Spirit Team discuss the development of the project.
Credit – ARES Unimelb YouTube Channel

In addition to technical derisking, many of the lessons the mission operators at the Melbourne Space Lab learned were about managing space projects more generally. Project management and personnel allocation might not be the most interesting topics, but they are necessary for completing a technical project like SpIRIT.

With over 2000 successful CubeSat launches, SpIRIT is another valuable industry contribution. As CubeSats become more widely used as scientific platforms, expect to see more and more efforts like SpIRIT reporting on their progress soon.

Learn More:
Trenti et al. – SpIRIT Mission: In-Orbit Results and Technology Demonstrations
UT – A Gamma Ray Burst Lasted So Long it Triggered a Satellite Twice
UT – A 2022 Gamma Ray Burst Was So Powerful, it was Detected by Spacecraft Across the Solar System
UT – What are CubeSats?

Lead Image:
Depiction of the SpIRIT CubeSat.
Credit – Trenti et al.

The post SpIRIT CubeSat Demonstrates a Operational Gamma and X-Ray Detector appeared first on Universe Today.



Sun-Like Stars Around Black Holes: What Gives?

Buried in the treasure trove of the Gaia catalog were two strange black hole systems. These were black holes orbiting sun-like stars, a situation that astronomers long thought impossible. Recently a team has proposed a mechanism for creating these kinds of oddballs.

The two black holes, dubbed BH1 and BH2, are each almost ten times the mass of the Sun. That’s not too unusual as black holes go, but what makes these systems strange is that they each have a companion star with roughly the same properties as the Sun. And those stars are orbiting on very wide orbits.

The problem with this setup is that typically sun-like stars don’t survive the transition of a companion turning into a black hole. The end of a giant star’s life is generally violent. When they die, they tend to either eject their smaller companion from the system completely, or just outright swallow them. Either way, we don’t expect small stars to orbit black holes.

But now researchers have a potential solution. They tracked the evolution of extremely massive stars, no smaller than 80 times the mass of the Sun. They found at the end of their lives they eject powerful winds that siphon off enormous amounts of material. This prevents the star from swelling so much that it just swallows its smaller companion. Eventually the star goes supernova and leaves behind a black hole.

Then the researchers studied just how common this kind of scenario is. They found many cases where a sun-like star with a wide enough orbit could survive this transition phase. The key is that the strong winds coming from the larger star have to be powerful enough to limit its late stage violence while still weak enough to not affect the smaller star. The researchers found that this was a surprisingly common scenario and could easily explain the existence of BH2 and BH2.

Based on these results the researchers believe that there might be hundreds of such systems in the Gaia data set that have yet to be discovered. It turns out that the universe is always surprising us and always much more clever than we could ever realize.

The post Sun-Like Stars Around Black Holes: What Gives? appeared first on Universe Today.



Tuesday, November 19, 2024

Starship’s Booster (and Donald Trump) Make a Splash With Sixth Flight Test

SpaceX’s Starship launch system went through its sixth flight test today, and although the Super Heavy booster missed out on being caught back at its launch pad, the mission checked off a key test objective with President-elect Donald Trump in the audience.

Trump attended the launch at SpaceX’s Starbase complex in the company of SpaceX CEO Elon Musk, who has been serving as a close adviser to the once and future president over the past few months. In a pre-launch posting to his Truth Social media platform, Trump wished good luck to “Elon Musk and the Great Patriots involved in this incredible project.”

Starship is the world’s most powerful rocket, with 33 methane-fueled Raptor engines providing more than 16 million pounds of thrust at liftoff. That’s twice the power of the Saturn V rocket that sent Americans to the moon in the 1960s and early ’70s. The two-stage rocket stands 121 meters (397 feet) tall, with a 9-meter-wide (30-foot-wide) fairing.

Super Heavy had an on-time launch at 4 p.m. CT (22:00 UTC) and was set up to fly itself back to the launch tower to be caught by the giant “Mechazilla” arms that were successfully used during last month’s flight test. But four minutes after liftoff, mission controllers said the booster had to be diverted instead to make a soft splashdown in the Gulf of Mexico. SpaceX didn’t immediately report the reason for the diversion.

“It was not guaranteed that we would be able to make a tower catch today,” launch commentator Kate Tice said during today’s webcast. “So, while we were hoping for it … the safety of the teams and the public and the pad itself are paramount. We are accepting no compromises in any of those areas.”

While the booster settled majestically into the Gulf, the Starship second stage — known as Ship for short — continued on a track that sent it as high as 190 kilometers (120 miles). A plush banana was placed in Ship’s cargo bay as a zero-gravity indicator, and Tice wore a T-shirt bearing the words “It’s Bananas!” to play off the lighthearted theme.

Ship successfully relit one of its methane-fueled Merlin engines while in space, which was a key objective for today’s suborbital test. Relighting the engines under such conditions will be required in the future for Ship’s orbital maneuvers.

A little more than an hour after launch, Ship’s engines fired for a final time to make a controlled splashdown in the Indian Ocean. The daylight visuals, plus other data collected during the flight, will help SpaceX’s team fine-tune Starship’s design for future tests.

SpaceX plans to use Starship to accelerate deployment of its Starlink broadband satellites, as well as to fly missions beyond Earth orbit. The company has a $2.9 billion contract from NASA to provide a version of Starship that’s customized for lunar landings, starting as early 2026. And Musk has said Starship could take on uncrewed missions starting that same year — with the first crewed mission set for launch in 2028 if everything goes right.

NASA Administrator Bill Nelson referred to those future flights in a message on Musk’s X social-media platform:

Check out these other postings tracking the progress of the flight test:

The post Starship’s Booster (and Donald Trump) Make a Splash With Sixth Flight Test appeared first on Universe Today.



The Strange Pulsar at the Center of the Crab Nebula

Thanks to the Hubble Space Telescope, we all have a vivid image of the Crab Nebula emblazoned in our mind’s eyes. It’s the remnant of a supernova explosion Chinese astronomers recorded in 1056. However, the Crab Nebula is more than just a nebula; it’s also a pulsar.

The Crab Pulsar pulsates in an unusual ‘zebra’ pattern, and an astrophysicist at the University of Kansas thinks he’s figured out why.

When massive stars explode as supernovae, they leave behind remnants: either a stellar-mass black hole or a neutron star. SN 1054 left behind the latter. The neutron star is highly magnetized and spins rapidly, emitting beams of electromagnetic radiation from its poles. As it spins, the radiation is intermittently directed towards Earth, making it visible to us. In this case, it’s called a pulsar.

Pulsars are complex objects. They’re extremely dense and can pack up to three solar masses of material into a sphere as small as 30 km in diameter. Their magnetic fields are millions of times stronger than Earth’s, they can rotate hundreds of times per second, and their immense gravity warps space-time. And their cores are basically huge atomic nuclei.

One result of their complexity is their radio emissions, and this is especially true of the Crab Pulsar.

Pulsars are known for their main pulse (MP), but they also emit other pulses that are more difficult to detect. In 2007, radio astronomers Hankins and Eilek discovered a strange pattern in the Crab Pulsar’s high-frequency radio emissions. This is the only pulsar known to produce these patterns between the pulsar’s main pulse (MP) and its intermittent pulse (IP).

“The mean profile of this star is dominated by a main pulse (MP) and an interpulse (IP),” Eilek and Hankins wrote in their paper. However, there are two additional pulses called HFC1 and HFC2 that create the zebra pattern.

This figure shows the mean profile of the Crab pulsar over a wide range of frequencies. The MP and IP are shown by dashed lines at pulse phases 70° and 215°. However, between 4.7 and 8.4 GHz, the IP is offset from the IP at lower and higher frequencies, and new components appear (labelled HFC1 and HFC2). This constitutes the Crab Pulsar's 'zebra' pattern. Image Credit: Moffett & Hankins 1996.
This figure shows the mean profile of the Crab pulsar over a wide range of frequencies. The MP and IP are shown by dashed lines at pulse phases 70° and 215°. However, between 4.7 and 8.4 GHz, the IP is offset from the IP at lower and higher frequencies. This constitutes the Crab Pulsar’s ‘zebra’ pattern. Two new high-frequency components also appear (labelled HFC1 and HFC2). Image Credit: Moffett & Hankins 1996.

Nobody has succeeded in explaining this unusual pattern. However, new research published in Physical Review Letters may finally explain it. The author is Mikhail Medvedev, who specializes in Theoretical Astrophysics at the University of Kansas. His research is “Origin of Spectral Bands in the Crab Pulsar Radio Emission.”

Medvedev says that the Crab Pulsar’s plasma-filled magnetosphere acts as a diffraction screen to produce the zebra pattern. This can explain the band spacing, the high polarization, the constant position angle, and other characteristics of the emissions.

This figure shows the overall geometry of the crab pulsar system. The red star is the pulsar. Its emissions pass through the plasma-filled magnetosphere, which acts as a diffraction screen, producing the zebra pattern of pulses. Image Credit: Medvedev 2024.
This figure shows the overall geometry of the crab pulsar system. The red star is the pulsar. Its emissions pass through the plasma-filled magnetosphere, which acts as a diffraction screen, producing the zebra pattern of pulses. Image Credit: Medvedev 2024.

A typical pulsar emits radio emissions from its poles, as shown in the figure below. They sometimes emit two signals per rotation period, one radio and one high frequency. They appear in a different phase of the rotation, with the higher frequency emission produced outside the light cylinder, the region where linear speed approaches the speed of light.

This figure shows how a standard pulsar emits radio emissions. Electrons and positrons are accelerated through one of the gaps in the magnetosphere. They stream along the open magnetic field lines and emit coherent radio emissions from the poles. Image Credit: National Radio Astronomy Observatory.
This figure shows how a standard pulsar emits radio emissions. Electrons and positrons are accelerated through one of the gaps in the magnetosphere. They stream along the open magnetic field lines and emit coherent radio emissions from the poles. Image Credit: National Radio Astronomy Observatory.

But the Crab Pulsar is different.

“The Crab pulsar is, in contrast, very special. Its radio main pulse and interpulse are coincident in phase with high-energy emission, indicating the same emission region,” Medvedev explains.

Medvedev explains that the High-Frequency Interpulse (HFIP) produced by the diffraction effect creates the zebra pattern. “The spectral pattern of the high-frequency interpulse (HFIP), observed between about
?~5 and ?~30 GHz is remarkably different and represents a sequence of emission bands resembling the
“zebra” pattern,” he writes.

This simple schematic helps explain the diffraction effect. The different colours represent different densities in the plasma field. Regions of the magnetosphere with different densities either co-rotate with the pulsar or not, helping create the zebra pattern in the emissions. Image Credit: Medvedev 2024.
This simple schematic helps explain the diffraction effect. The different colours represent different densities in the plasma field. Regions of the magnetosphere with different densities either co-rotate with the pulsar or not, helping create the zebra pattern in the emissions. Image Credit: Medvedev 2024.

Medvedev’s proposed model has an additional benefit. He says it can be used to perform tomography on pulsars to uncover more details about their powerful magnetospheres.

“The model allows one to perform “tomography” of the pulsar magnetosphere,” he writes.

“We predict that this HFIP properties can also be observed in other pulsars if their radio and high energy emission are in phase. This would happen if the radio emission is produced in the outer magnetosphere as opposed to the “normal” emission from the polar region,” Medvedev explains.

This composite image of the Crab Nebula features X-rays from Chandra (blue and white), optical data from Hubble (purple), and infrared data from Spitzer (pink). Chandra has repeatedly observed the Crab since the telescope was launched into space in 1999. Image Credit: X-ray: NASA/CXC/SAO; Optical: NASA/STScI; Infrared: NASA-JPL-Caltech
This composite image of the Crab Nebula features X-rays from Chandra (blue and white), optical data from Hubble (purple), and infrared data from Spitzer (pink). Chandra has repeatedly observed the Crab since the telescope was launched into space in 1999. Image Credit: X-ray: NASA/CXC/SAO; Optical: NASA/STScI; Infrared: NASA-JPL-Caltech

Medvedev says his model can also explain the HFC1 and HFC2 in the Crab Pulsar’s emissions spectrum. They’re also artifacts of his proposed diffraction model. “We propose that these high-frequency components are the reflections off the magnetosphere of the same source producing the diffracted HFIP,” he explains.

“To conclude, we propose a model, which explains the peculiar spectral band structure (the zebra pattern) of the high-frequency interpulse of the Crab pulsar radio emission,” Medvedev writes.

The post The Strange Pulsar at the Center of the Crab Nebula appeared first on Universe Today.



The Biggest Black Holes May Start From The Tiniest Seeds

The existence of gigantic black holes in the very early universe challenges our assumptions of how black holes form and grow. New research suggests that these monsters may have found their origins in the earliest epochs of the Big Bang.

For years astronomers have been troubled by observations of fully grown supermassive black holes before the universe was even a billion years old. This is challenging because as far as we know the only way to make black holes is through the deaths of massive stars. And the only way for them to grow is either through mergers or the accumulation of material. Following these known mechanisms it’s extremely difficult to build the observed black holes, which have masses hundreds of millions of times that of the Sun, so quickly.

And so astronomers have been long attempting to find some other way to explain how these giant black holes arrive on the cosmic scene. In a new paper, a team of researchers point to an seemingly unlikely scenario: the first microseconds of the Big Bang.

In the 1970s Stephen Hawking hypothesized that the tumultuous epochs of the incredibly early universe would cause random fluctuations of matter to spontaneously collapse to form black holes. These primordial black holes might even persist to the present day, and astronomers have even gone so far as to propose that these black holes explain dark matter.

But observations have placed considerable constraints on the populations of primordial black holes. They simply can’t be a major constituent of the universe, otherwise we would have seen evidence for them by now.

But in the new paper the researchers point out that they don’t need to be common to form the seeds of supermassive black holes. They can be incredibly rare, making up less than 1% of all the mass in the universe. But if they are formed in the early universe, then slowly over time they can accrete new material and merge with each other, especially in the first few hundred million years as galaxies are first forming.

This scenario would mean that giant black holes would form not after the appearance of the first stars, but in parallel with them. Then by the time stars and galaxies appear the black holes are already fully grown.

The researchers were able to find a scenario that could explain the observed population of giant black holes in the young universe. However, this is only the first step in the research. The next is to fine-tune these models and incorporate them in more detailed simulations of the evolution of the early universe to see just how plausible this scenario is.

The post The Biggest Black Holes May Start From The Tiniest Seeds appeared first on Universe Today.



Monday, November 18, 2024

China’s Proposed Cargo Shuttle, the Haolong, Has Entered Development

The 2024 China International Aviation and Aerospace Exhibition was held in Zhuhai last week – from November 12th to 17th, 2024. Since 1996, and with support from the Chinese aerospace industry, this biennial festival features actual products, trade talks, technological exchanges, and an air show. This year’s big highlight was China’s newly announced reusable space cargo shuttle, the Haolong (Chinese for “dragon”). According to chief designer Fang Yuanpeng, the spacecraft has entered the engineering phase and will be ready for space in the near future.

The Haolong shuttle is being developed by the Chengdu Aircraft Design and Research Institute, which has developed several Chinese fighter jets in the past. It has a large wingspan, measuring eight meters (26.25 ft) in width and about 10 meters (33 ft) long, with a high lift-to-drag ratio. From the image provided (above), the design is clearly inspired by the now-retired Space Shuttle and features the same type of payload bay with two bay doors. While the cargo shuttle has a comparable wingspan (8.7 m; 29 ft), it is significantly shorter than the Space Shuttle, which measured 56.1 m (184 ft) in length.

This makes the Haolong (in terms of size) more akin to the X-37B and China’s Shenlong spaceplane. Like these spaceplanes, the Haolong spacecraft will be autonomous and feature cutting-edge aviation technologies. The design was one of several concepts issued in response to a solicitation by the China Manned Space Agency (CMSA) for low-cost and commercial cargo spacecraft. These will provide logistical support for China’s Tiangong space station as it undergoes expansion in the coming years.

Artist’s impression of China’s reusable Shenlong spaceplane. Credit: China Aerospace Studies Institute

According to the state-owned news agency Xinhua, the winners of the solicitation were announced on October 29th. This included the CMSA’s Haolong shuttle and the Qingzhou spacecraft, an integrated cargo capsule submitted by the Innovation Academy for Microsatellites of the Chinese Academy of Sciences (IAMCAS). According to Lin Xiqiang, the deputy director of the CMSA, both companies won contracts for the flight verification phase of their proposals. According to Fang, the space shuttle Haolong will launch into orbit via a commercial carrier rocket, make atmospheric reentry, and land horizontally on a runway.

Once it reaches orbit, it will unfold its solar panels and open its docking shield. The shuttle’s rear will dock with Tiangong, where taikonauts can access the cargo bay and transfer the payload to the space station. According to Fang, “the Hoalong can receive maintenance similar to an aircraft after landing, so it can conduct another mission.” The spacecraft has already completed the design phase and is moving into engineering development. Fang indicated that this phase is well underway and will be followed by the cargo mission phase. “I believe that the public will see it soon,” he said.

Meanwhile, the Qingzhou cargo spacecraft has a cargo volume of up to 27 cubic meters, which is expected to provide logistics flexibility and significantly reduce transportation costs. According to Xinhua, Qingzhou also has an intelligent transportation system capable of supporting crewed and uncrewed in-orbit experiments. The cargo spacecraft is scheduled to be launched by the Lijian-2, a reusable rocket currently under development by CAS Space. This rocket is one of several reusable medium-lift launch vehicles China plans to debut in the coming years.

Lin also noted that “this strategic move will not only slash cargo transportation costs for the space station but also pave the way for new opportunities in the growth of the country’s commercial space industry.” According to market research, China’s commercial space industry is expected to reach a market value of 2.34 trillion yuan ($323.35 billion) by the end of 2024.

Further Reading: Global Times

The post China’s Proposed Cargo Shuttle, the Haolong, Has Entered Development appeared first on Universe Today.